

EN7000 Technical Manual

Welding control for 50/60 Hz spot, projection, roll-spot, seam and multi-welding applications

For firmware version 1.12

EN7000 Technical Manual

Copyright © 2019 BF ENTRON Ltd. and/or its affiliates. All rights reserved.

- The information in this manual is subject to change.
- BF ENTRON assumes no responsibility for any errors that may appear in this manual.
- BF ENTRON assumes no responsibility for any injury, loss or damage caused by improper installation, use or application of the EN7000 welding control
- The reproduction, transmission or use of this document or contents is not permitted without express authority from BF ENTRON
- BF ENTRON's trademarks and trade dress may not be used in connection with any product or service that is not BF ENTRON's, in any manner that is likely to cause confusion among customers or in any manner that disparages or discredits BF ENTRON. All other trademarks not owned by BF ENTRON are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by BF ENTRON.

BF ENTRON Ltd. Building 80 Bay 1 First Avenue The Pensnett Estate Kingswinford West Midlands DY6 7FQ England Phone +44 (0)1384 455401 • Fax +44 (0)1384 455551 www.entroncontrols.com

Issue	Date	Comment
1.00	27/02/17	Added parameter descriptions and % conduction parameter.
1.02	23/05/17	Increased weld programs from 128 to 256. New options for SCR select and CT calibration.
		New options for valves. New tutorial (resetting faults). Issue number corresponds to
		EN7000 firmware.
1.04	26/09/17	Updated issue number.
1.05	30/11/17	Added seam welding features.
1.07	09/04/18	Models 5 and 6 discontinued. Seam welding features added to Models 3 and 4.
1.08	12/09/18	Added note to reset stepper/counter inputs. Updated status codes.
1.09	15/01/19	Revised description of force control.
1.10	12/02/19	Data log contains 6000 records
1.11	27/02/19	Models 1 and 2 discontinued. Model 3 is referred to as EN7000 and model 4 as EN7000-
		TS. EN7000 and EN7000-TS can emulate the functionality of Models 1 and 2.
1.12		Toroid test added

2

IMPORTANT SAFETY INSTRUCTIONS

READ ALL INSTRUCTIONS BEFORE USING THE EN7000

WARNING

DO NOT DISASSEMBLE, REPAIR, OR MODIFY THE EN7000. These actions can cause electric shock and fire.

- Use only as described in this manual. Use only BF ENTRON recommended accessories and replacement parts.
- Stop operation if any problems occur. If the equipment is not working as it should, has been dropped, damaged, left outdoors, or been in contact with water, contact BF ENTRON.
- Only apply the specified power. Application of a voltage or current beyond the specified range can cause electric shock or fire.
- Do not use damaged plugs or connecting cables.
- Keep water and water containers away from the EN7000. Water ingress can cause a short circuit, electric shock, or fire.
- Do not insert objects into openings. Do not use with any opening blocked; keep free of dust and debris.
- Do not install the EN7000 in any of the following environments
 - o damp environments where humidity is 90% or higher.
 - o dusty environments.
 - o environments where chemicals are handled.
 - o environments near a high-frequency noise source.
 - hot or cold environments where temperatures are above 40°C or below 0°C, or environments where water will condense.

Contents

Section 1 Introduction
Section 2 Mounting
Section 3 Inputs and outputs17
Section 4 Discrete I/O 19
Section 5 MODBUS I/O
Section 6 Weld control
Section 7 Electrode management
Section 8 Status information
Section 9 History log
Section 10 Multiwelding48
Section 11 Seam welding
Section 12 Configuration
Section 13 Programming61
Section 14 Tutorials
Section 15 Appendix
Section 16 Terminology

Introduction

The EN7000 is a SINGLE PHASE AC and 3-PHASE DC constant current and proportional force controller for 50/60 Hz spot, projection and seam welding applications.

The controller is available in two formats:

- EN7000: core welding control with pre-heat, main heat and post-heat intervals, force profile, multi-gun, multi-air valve, multi electrode manager and expansion port. Gear-plate (flat plate) mounted.
- EN7000-TS: as EN7000, plus built-in touch screen display. Front panel mounted.

EN7000-TS

Multiple communication and control options are supported by a number of programming methods. The Ethernet port supports simultaneous programming and control connection via a single physical cable.

Short-circuit proof outputs and a guided-contact pilot relay provides enhanced safety. Connection to the power system is via a single ribbon cable. Analog inputs and outputs can be used to drive a proportional air regulator valve for force control.

Operation in Standard mode provides a basic set of features for simple applications. Extended mode adds advanced features for more demanding applications. Choose between Standard or Extended features (Section 12 Configuration). EN7000 must be restarted after changing this setting.

Features

	Moo	del
	EN7000	EN7000-TS
NetFlash programming	✓	\checkmark
WSP3 programming	\checkmark	\checkmark
Built-in programmer ¹		✓
Panel mounting		✓
Gear-plate mounting	✓	
Ethernet ²	\checkmark	\checkmark
RS232	\checkmark	✓
RS485	\checkmark	✓
MODBUS TCP/IP	\checkmark	✓
MODBUS RTU	✓	\checkmark
Analogue inputs ³	1	1
Analogue outputs ³	1	1
Discrete inputs	16	16
Discrete outputs ⁴	16	16
Weld programmes	256	256
Pre-heat	\checkmark	\checkmark
Main heat	\checkmark	✓
Post-heat ⁵	✓	\checkmark
Slope	\checkmark	\checkmark
Constant current	\checkmark	\checkmark
Power factor adjust	\checkmark	✓
Cascade/Mux ⁵	8	8
Multi air valve ^{5, 6}	8	8
Aux valves	7	7
Force profile ⁵	\checkmark	\checkmark
Electrodes/SCRs ⁵	8	8
Real-time clock	√	✓
Data log (spot welds)	6000	6000
Expansion	\checkmark	\checkmark
Seam weld sequence ⁵	✓	✓

¹ Colour touch-screen display ² Two simultaneous connections

 3 0 to 10 V

⁴ 24 V dc, short-circuit proof, monitored

⁵ Extended feature

⁶ Guided contact safety relay, monitored

The extended features can be enabled for greater flexibility or more demanding applications.

Weld parameters

	EN7000/EN7000-TS
Presqueeze	\checkmark
Squeeze	\checkmark
Pre-heat	\checkmark
Cool1	\checkmark
Upslope	\checkmark
Main heat	\checkmark
Cool2	\checkmark
Downslope	\checkmark
Pulses	\checkmark
Post-heat ¹	\checkmark
Hold	\checkmark
Off	\checkmark
WAV selection ¹	\checkmark
Aux valve control	\checkmark
Retract/Hi-lift	\checkmark
Electrode selection ¹	\checkmark
Force profile ¹	\checkmark
SCR selection ¹	\checkmark
Current monitor	\checkmark
Force monitor	\checkmark
Spot weld	\checkmark
Roll-spot weld ¹	\checkmark
Seam weld ¹	\checkmark

¹ Extended feature

Part numbers

Model	Part number
EN7000	01-07-03
EN7000-TS	01-07-04

Programming options

	analise litera ini						
Paper 12	Townships.	inda.					
	100	-		-			
*******	104 200		100				
	10.00	-	100				
	10.0		-22	TANK .	Talla.	and and	
6.0前目前日前日	100.00	-	-	-	-		
	1.000	in 11	-				
- 362							
	Contract and strengt	T-manufacture of					
	Logical all's			Laves.	10.0		

1. NetFlash

This PC-compatible program displays and allows editing of all welding parameters and status information.

In addition to programming, NetFlash provides backup/restore functions for control data, live data logging to a file and a utility for updating the firmware in the EN7000.

2. WSP3 Pendant

EN7000s work with the same WSP3 pendant that is used with iPAK and WS2003. Access to all parameters is provided, plus diagnostic indication.

3. MODBUS

A PLC or HMI MODBUS master can be used to program, control and monitor EN7000s. All parameters are directly mapped to MODBUS registers for easy access. Both MODBUS-TCP/IP (Ethernet) and MODBUS-RTU (RS485) protocols are supported.

Malamenu			
Use program 0	Discrete I/O	^	
Program	Bus I/O	-	
Electrode	Analog I/O		
History log	System	\mathbf{v}	

4. Built-in touch screen

EN7000-TS has a touch screen panel which provides easy access to all parameters and indications.

5. Ethernet/IP

An optional adapter card can be fitted to the expansion port, providing full data access via the EtherNet/IP protocol.

Communications

9

Applications

Standard machines, portable/manual guns, robot guns, multi-welders and seam welders.

Standard machine.

Multi-head machine. Up to eight cylinders. Cascade or independent firing.

Multi-welder. Up to 8 transformers and cylinders. Cascade or independent firing.

Seam welder with one transformer.

Seam welder with a multi-tap transformer.

Getting started

- Section 2 Mounting: Ensure the EN7000 is securely mounted.
- Section 3 Inputs and outputs: connect the essential services and inputs/outputs depending on the application.
- Make sure that you have sufficient air pressure and cooling water where necessary.
- Section 13 Programming: switch on then use the 'Initialise all data' function to clear the EN7000's memory.
- Section 12 Configuration: set the Configuration parameters appropriately for the application.
- Section 7 Electrode management: edit the calibration file.
- Section 13 Programming: edit program 0 to set up a basic weld sequence e.g. Squeeze = 10, Main heat = 10, Hold = 10, Pulses=1, and Main mode = PHA.
- Section 13 Programming: a welding operation should be possible at this stage. Begin by using the gun short-circuit. The EN7000 should report the measured current on the diagnostic display.
- Section 7 Electrode management: perform the calibration operation for the toroid sensitivity. Observe the current with an external meter. Set the program heat to give a typical value of welding current on the meter. Adjust the sensor sensitivity until the EN7000 measurement corresponds with the meter.
- Make any other adjustments which may be required and set up other programmes for welding.

This page intentionally left blank

Mounting

EN7000 is gear-plate mounted and EN7000-TS is front panel mounted.

If you have purchased a complete system the EN7000 will already be mounted in the case. If you have purchased a timer only kit you will need to mount the EN7000 to the rest of your equipment.

Gear plate mounting

The mounting arrangements for EN7000 are shown below. All dimensions are in mm.

Front panel mounting

The mounting arrangements for EN7000-TS are shown below. All dimensions are in mm.

Allow space for the connectors when mounting EN7000 or EN7000-TS

Inputs and outputs

EN7000 uses a number of inputs and outputs to control and monitor the weld sequence.

Inputs

Input	AWS designation	Description
Start	FS1	When this input is activated a weld sequence begins. If the input is removed during the Squeeze interval the sequence is aborted. If the input is maintained through the Squeeze interval but switched off subsequently, the sequence terminates normally.
Weld on	NW1	This input enables the weld current. If this input is inactive a weld sequence will not produce any current.
Stop	ES1	Sequencing is inhibited or aborted if this input is not active.
Thermal	TT1	This input is usually connected to a normally closed thermal contact attached to the weld transformer. Sequencing is inhibited if this input is not active.
2 nd stage	PS1	If enabled, EN7000 checks that the 2nd Stage signal is present before proceeding to weld. The checking is programmable to take place either before or after the Squeeze interval. If the signal is not present EN7000 waits for the signal before it proceeds. If the Start signal is removed while waiting, the sequence is aborted.
Retract	RT1	This input is used to control the Retract function.
Reset fault	FR1	This input resets the Fault output and clears the status messages. Only momentary application is required (minimum time 40ms).
Reset counter/tip dress acknowledge ¹		Used to reset the counter(s) or acknowledge a tip dress request.
Reset stepper ²	SR1	Used to reset the stepper(s).
P1	BP1	Program select inputs. Weld program selection is made by applying the binary
P2	BP2	code for the required program. Programs 0 to 127 can be selected (programs 128
P4	BP4	to 255 can still be selected internally or via the fieldbus).
P8	BP8	
P16	BP16	If the 'key-switch' security option is selected, then input P64 (on the discrete
P32 P64	BP32 BP64	programs 0 to 63 can be selected (programs 0 to 63 can be selected (programs 64 to 255 can still be selected internally or via the fieldbus).
CT	-	Input for the current transformer.
Toroid		Input for the toroid. Resistance must be in the range 10 to 300 Ohms.
Analog		0 to 10 V analog input. Can be used to monitor a proportional air regulator valve

Outputs

Output	AWS	Description		
	designation			
EOS	EH1	This output switches on to indicate the end of the weld sequence.		
HAV	RV1	Used in conjunction with the Retract input to control the welding head.		
Fault	FT1	This output indicates a fault condition.		
Ready		This output is active if EN7000 is ready to weld. The output switches off under		
		some fault conditions.		
Contactor	MC1	This output can be used to control an isolation contactor.		
Counter/tip		This output indicates that the counter has reached its limit or that a tip		
dress request		dressing operation is required.		
Stepper		This output indicates that the stepper has reached its limit.		
Pre-warn		This output indicates that the stepper is close to its limit.		
AV1		Additional outputs that can be used during the weld sequence.		
AV2				
AV3				
AV4				
AV5				
AV6				
AV7				
AV8				
Analog		0 to 10 V analog output. Can be used to drive a proportional air regulator		
		valve for force control		

¹ Momentary operation will reset all expired counters. If maintained for more than 5 seconds all counters will be reset, regardless of status.

² Momentary operation will reset all expired steppers. If maintained for more than 5 seconds all steppers will be reset, regardless of status.

Discrete I/O

The inputs and outputs are accessible via connectors X2, X3, X4 and X5. The connectors are two-part terminals for use with wires up to 1 mm^2

If the EN7000 is supplied fitted into a case some connections will have been pre-wired by BF ENTRON. See the case wiring diagram for details.

EN7000

23

MODBUS I/O

EN7000 can be operated via MODBUS instead of using the discrete inputs and outputs.

Both MODBUS TCP/IP (Ethernet) and MODBUS RTU (RS485) protocols are supported.

Write the inputs using MODBUS function 16 Read the outputs using MODBUS function 3

MODBUS access types

Write inputs					
	Туре	Value	Description		
Function code	UINT	16	Write multiple registers		
Read offset	UINT	0			
Read length	UINT	0			
Write offset	UINT	16#8000 (= 32768)			
Write length	UINT	2			

Read outputs						
	Туре	Value	Description			
Function code	UINT	3	Read holding registers			
Read offset	UINT	16#9000 (= 36864)				
Read length	UINT	24				
Write offset	UINT	0				
Write length	UINT	0				

MODBUS mapping (inputs to EN7000)

Variable	Channel	Address	Туре	Description
	Write inputs	%QW0	WORD ARRAY [01]	Write multiple registers
	Write inputs [0]	%QW0	WORD	WRITE 16#8000 (= 32768)
Start	Bit 0	%QX0.0	BOOL	
Weld on	Bit 1	%QX0.1	BOOL	
Stop	Bit 2	%QX0.2	BOOL	
Transformer thermal	Bit 3	%QX0.3	BOOL	
2 nd stage	Bit 4	%QX0.4	BOOL	
Retract	Bit 5	%QX0.5	BOOL	
Reset fault	Bit 6	%QX0.6	BOOL	
Reset counter	Bit 7	%QX0.7	BOOL	
Reset stepper	Bit 8	%QX1.0	BOOL	
Reserved	Bit 9	%QX1.1	BOOL	
Reserved	Bit 10	%QX1.2	BOOL	
Reserved	Bit 11	%QX1.3	BOOL	
Reserved	Bit 12	%QX1.4	BOOL	
Reserved	Bit 13	%QX1.5	BOOL	
Reserved	Bit 14	%QX1.6	BOOL	
Reserved	Bit 15	%QX1.7	BOOL	
	Write inputs [1]	%QW2	WORD	WRITE 16#8001 (= 32769)
P1	Bit 0	%QX2.0	BOOL	
P2	Bit 1	%QX2.1	BOOL	
P4	Bit 2	%QX2.2	BOOL	
P8	Bit 3	%QX2.3	BOOL	
P16	Bit 4	%QX2.4	BOOL	
P32	Bit 5	%QX2.5	BOOL	
P64	Bit 6	%QX2.6	BOOL	
P128	Bit 7	%QX2.7	BOOL	
Reserved	Bit 8	%QX3.0	BOOL	
Reserved	Bit 9	%QX3.1	BOOL	
Reserved	Bit 10	%QX3.2	BOOL	
Reserved	Bit 11	%QX3.3	BOOL	
Reserved	Bit 12	%QX3.4	BOOL	
Reserved	Bit 13	%QX3.5	BOOL	
Reserved	Bit 14	%QX3.6	BOOL	
Reserved	Bit 15	%QX3.7	BOOL	

Variable	Channel	Address	Туре	Description
	Read outputs	%IW0	WORD ARRAY [023]	Read holding registers
	Read outputs [0]	%IW0	WORD	READ 16#9000 (= 36864)
EOS	Bit 0	%IX0.0	BOOL	, , ,
HAV	Bit 1	%IX0.1	BOOL	
Fault	Bit 2	%IX0.2	BOOL	
Ready	Bit 3	%IX0.3	BOOL	
Contactor	Bit 4	%IX0.4	BOOL	
Counter	Bit 5	%IX0.5	BOOL	
Stepper	Bit 6	%IX0.6	BOOL	
Pre-warn	Bit 7	%IX0.7	BOOL	
AV8	Bit 8	%IX1.0	BOOL	
AV7	Bit 9	%IX1.1	BOOL	
AV6	Bit 10	%IX1.2	BOOL	
AV5	Bit 11	%IX1.3	BOOL	
AV4	Bit 12	%IX1.4	BOOL	
AV3	Bit 13	%IX1.5	BOOL	
AV2	Bit 14	%IX1.6	BOOL	
AV1	Bit 15	%IX1.7	BOOL	
	Read outputs [1]	%IW2	WORD	READ 16#9001 (= 36865)
Start	Bit 0	%IX2.0	BOOL	= %QX0.0
Weld on	Bit 1	%IX2.1	BOOL	= %QX0.1
Stop	Bit 2	%IX2.2	BOOL	= % Q X 0.2
Transformer thermal	Bit 3	%IX2.3	BOOL	=%0003
2 nd stage	Bit 4	%IX2.4	BOOL	=%0000
Retract	Bit 5	%IX2.5	BOOL	= %0X0.5
Reset fault	Bit 6	%IX2.6	BOOL	= %0X0.6
Reset counter	Bit 7	%IX2.0	BOOL	= %0X0.7
Reset stenner	Bit 8	%IX3.0	BOOL	= %000000000000000000000000000000000000
P1	Bit 9	%IX3.1	BOOL	= discrete input P1
P2	Bit 10	%IX3.2	BOOL	= discrete input P2
P4	Bit 10	%IX3.3	BOOL	= discrete input P4
P8	Bit 12	%IX3.4	BOOL	= discrete input P8
P16	Bit 13	%IX3.5	BOOL	= discrete input P16
P32	Bit 1/	%IX3.6	BOOL	= discrete input P32
P64	Bit 15	%1X3.7	BOOL	= discrete input P64
F 04	Pead outputs [2]	%1\\//	WORD	= discrete input P 04 PEAD 16#0002 (- 36866)
Stort		%IX4 0	ROOL	C discrete input Start
Wold on	DILU Dit 1	701X4.0	BOOL	
Stop		701A4.1	BOOL	
Thormol	DIL Z	701X4.2	BOOL	= discrete input Stop
	DILJ	%1X4.3	BOOL	
	BIL 4	%IX4.4	BOOL	E discrete input 2 nd stage
	BIL 3	%1X4.5	BOOL	≘ discrete input Retract
Reset fault	BIt 6	%IX4.6	BOOL	≘ discrete input Reset fault
Reset counter	Bit 7	%IX4.7	BOOL	≘ discrete input Reset counter
Reset stepper		%IX5.U	BOOL	≘ aiscrete input Reset stepper
P1	Bit 40	%IX5.1	BOOL	≘ discrete input P1
P2	BIT 10	%IX5.2	ROOF	≘ discrete input P2
P4	Bit 11	%IX5.3	BOOL	≘ discrete input P4
8	Bit 12	%IX5.4	BOOL	≘ discrete input P8
P16	Bit 13	%IX5.5	BOOL	≘ discrete input P16
P32	Bit 14	%IX5.6	BOOL	≘ discrete input P32
P64	Bit 15	%IX5.7	BOOL	≘ discrete input P64

Variable	Channel	Address	Tvpe	Description
Analog input (mV)	Read outputs [3]	%IW6	WORD	READ 16#9003 (= 36867)
Analog output (mV)	Read outputs [4]	%IW8	WORD	READ 16#9004 (= 36868)
% conduction	Read outputs [5]	%IW10	WORD	READ 16#9005 (= 36869)
Reserved	Read outputs [6]	%IW12	WORD	READ 16#9006 (= 36870)
Reserved	Read outputs [7]	%IW/12	WORD	READ 16#9007 (= 36871)
Status register 0	Read outputs [8]	%IW/16	WORD	READ 16#9008 (= 36872)
Stop	Rit 0	%IX16.0	BOOL	Bit 0
Supa orror	Dit 0	%IX16.1	BOOL	Bit 0
Betraet not ready		%IX10.1	BOOL	Bit 2
SCR bot		0/1X10.2	BOOL	Dit 2
Transformer het		%IX10.3	BOOL	Dit 3
	DIL 4	0/1X10.4	BOOL	Dit 4
Pilot lauit	BIL D	%IX10.5	BOOL	Bit 6
Restant required	DIL 0	%IX 10.0	BOOL	BIL 0
Headlock	BIT /	%IX16.7	BOOL	Bit /
Toroid short-circuit	BIT 8	%IX17.0	BOOL	Bit 8
I oroid open-circuit	Bit 9	%IX17.1	BOOL	Blt 9
Reserved	Bit 10	%IX17.2	BOOL	
Reserved	Bit 11	%IX17.3	BOOL	
Reserved	Bit 12	%IX17.4	BOOL	
Reserved	Bit 13	%IX17.5	BOOL	
Reserved	Bit 14	%IX17.6	BOOL	
Test mode	Bit 15	%IX17.7	BOOL	Bit 15
Status register 1	Read outputs [9]	%IW18	WORD	READ 16#9009 (= 36873)
Start on	Bit 0	%IX18.0	BOOL	Bit 16
Weld off	Bit 1	%IX18.1	BOOL	Bit 17
Program inhibited	Bit 2	%IX18.2	BOOL	Bit 18
Output fault	Bit 3	%IX18.3	BOOL	Bit 19
Reserved	Bit 4	%IX18.4	BOOL	
Too many links	Bit 5	%IX18.5	BOOL	Bit 21
Bad link	Bit 6	%IX18.6	BOOL	Bit 22
Maximum current	Bit 7	%IX18.7	BOOL	Bit 23
Toroid over range	Bit 8	%IX19.0	BOOL	Bit 24
CT over range	Bit 9	%IX19.1	BOOL	Bit 25
Reserved	Bit 10	%IX19.2	BOOL	
Reserved	Bit 11	%IX19.3	BOOL	
Reserved	Bit 12	%IX19.4	BOOL	
Reserved	Bit 13	%IX19.5	BOOL	
Reserved	Bit 14	%IX19.6	BOOL	
Reserved	Bit 15	%IX19.7	BOOL	
Status register 2	Read outputs [10]	%IW20	WORD	READ 16#900A (= 36874)
Low force	Bit 0	%IX20.0	BOOL	Bit 32
High force	Bit 1	%IX20.1	BOOL	Bit 33
Low pre-current	Bit 2	%IX20.2	BOOL	Bit 34
High pre-current	Bit 3	%IX20.3	BOOL	Bit 35
Low main current	Bit 4	%IX20.4	BOOL	Bit 36
High main current	Bit 5	%IX20.4	BOOL	Bit 37
	Bit 6	%1X20.5	BOOL	Bit 38
Low post-current		0/120.0	BOOL	Bit 30
No 2nd store		01/20.7	BOOL	Dit 39 Dit 40
No force		01AZ1.U	BOOL	
Record		701AZ1.1	BOOL	DIL 4 1
Reserved		%IA21.2	BOOL	
Reserved	DILTI	%IX21.3	BOOL	
Reserved	BIT 12	%IX21.4	BOOL	
Reserved	Bit 13	%IX21.5	BOOL	
Reserved	Bit 14	%IX21.6	BOOL	
Reserved	Bit 15	%IX21.7	BOOL	

Variable	Channel	Address	Туре	Description
Status register 3	Read outputs [11]	%IW22	WORD	READ 16#900B (= 36875)
End of count 0	Bit 0	%IX22.0	BOOL	Bit 48
End of count 1	Bit 1	%IX22.1	BOOL	Bit 49
End of count 2	Bit 2	%IX22.2	BOOL	Bit 50
End of count 3	Bit 3	%IX22.3	BOOL	Bit 51
End of count 4	Bit 4	%IX22.4	BOOL	Bit 52
End of count 5	Bit 5	%IX22.5	BOOL	Bit 53
End of count 6	Bit 6	%IX22.6	BOOL	Bit 54
End of count 7	Bit 7	%IX22.7	BOOL	Bit 55
Reserved	Bit 8	%IX23.0	BOOL	
Reserved	Bit 9	%IX23.1	BOOL	
Reserved	Bit 10	%IX23.2	BOOL	
Reserved	Bit 11	%IX23.3	BOOL	
Reserved	Bit 12	%IX23.4	BOOL	
Reserved	Bit 13	%IX23.5	BOOL	
Reserved	Bit 14	%IX23.6	BOOL	
Reserved	Bit 15	%IX23.7	BOOL	
Status register 4	Read outputs [12]	%IW24	WORD	READ 16#900C (= 36876)
End of electrode 0	Bit 0	%IX24.0	BOOL	Bit 64
End of electrode 1	Bit 1	%IX24.1	BOOL	Bit 65
End of electrode 2	Bit 2	%IX24.2	BOOL	Bit 66
End of electrode 3	Bit 3	%IX24.3	BOOL	Bit 67
End of electrode 4	Bit 4	%IX24.4	BOOL	Bit 68
End of electrode 5	Bit 5	%IX24.5	BOOL	Bit 69
End of electrode 6	Bit 6	%IX24.6	BOOL	Bit 70
End of electrode 7	Bit 7	%IX24.7	BOOL	Bit 71
Reserved	Bit 8	%IX25.0	BOOL	
Reserved	Bit 9	%IX25.1	BOOL	
Reserved	Bit 10	%IX25.2	BOOL	
Reserved	Bit 11	%IX25.3	BOOL	
Reserved	Bit 12	%IX25.4	BOOL	
Reserved	Bit 13	%IX25.5	BOOL	
Reserved	Bit 14	%IX25.6	BOOL	
Reserved	Bit 15	%IX25.7	BOOL	
Status register 5	Read outputs [13]	%IW26	WORD	READ 16#900D (= 36877)
Tip dress 0	Bit 0	%IX26.0	BOOL	Bit 80
Tip dress 1	Bit 1	%IX26.1	BOOL	Bit 81
Tip dress 2	Bit 2	%IX26.2	BOOL	Bit 82
Tip dress 3	Bit 3	%IX26.3	BOOL	Bit 83
Tip dress 4	Bit 4	%IX26.4	BOOL	Bit 84
Tip dress 5	Bit 5	%IX26.5	BOOL	Bit 85
Tip dress 6	Bit 6	%IX26.6	BOOL	Bit 86
Tip dress 7	Bit 7	%IX26.7	BOOL	Bit 87
Reserved	Bit 8	%IX27.0	BOOL	
Reserved	Bit 9	%IX27.1	BOOL	
Reserved	Bit 10	%IX27.2	BOOL	
Reserved	Bit 11	%IX27.3	BOOL	
Reserved	Bit 12	%IX27.4	BOOL	
Reserved	Bit 13	%IX27.5	BOOL	
Reserved	Bit 14	%IX27.6	BOOL	
Reserved	Bit 15	%IX27.7	BOOL	

Variable	Channel	Address	Туре	Description
Status register 6	Read outputs [14]	%IW28	WORD	READ 16#900E (= 36878)
Prewarn 0	Bit 0	%IX28.0	BOOL	Bit 96
Prewarn 1	Bit 1	%IX28.1	BOOL	Bit 97
Prewarn 2	Bit 2	%IX28.2	BOOL	Bit 98
Prewarn 3	Bit 3	%IX28.3	BOOL	Bit 99
Prewarn 4	Bit 4	%IX28.4	BOOL	Bit 100
Prewarn 5	Bit 5	%IX28.5	BOOL	Bit 101
Prewarn 6	Bit 6	%IX28.6	BOOL	Bit 102
Prewarn 7	Bit 7	%IX28.7	BOOL	Bit 103
Reserved	Bit 8	%IX29.0	BOOL	
Reserved	Bit 9	%IX29.1	BOOL	
Reserved	Bit 10	%IX29.2	BOOL	
Reserved	Bit 11	%IX29.3	BOOL	
Reserved	Bit 12	%IX29.4	BOOL	
Reserved	Bit 13	%IX29.5	BOOL	
Reserved	Bit 14	%IX29.6	BOOL	
Reserved	Bit 15	%IX29.7	BOOL	
Status register 7	Read outputs [15]	%IW30	WORD	READ 16#900F (= 36879)
Reserved	Bit 0	%IX30.0	BOOL	
Reserved	Bit 1	%IX30.1	BOOL	
Reserved	Bit 2	%IX30.2	BOOL	
Reserved	Bit 3	%IX30.3	BOOL	
Reserved	Bit 4	%IX30.4	BOOL	
Reserved	Bit 5	%IX30.5	BOOL	
Reserved	Bit 6	%IX30.6	BOOL	
Reserved	Bit 7	%IX30.7	BOOL	
Reserved	Bit 8	%IX31.0	BOOL	
Reserved	Bit 9	%IX31.1	BOOL	
Reserved	Bit 10	%IX31.2	BOOL	
Reserved	Bit 11	%IX31.3	BOOL	
Reserved	Bit 12	%IX31.4	BOOL	
Reserved	Bit 13	%IX31.5	BOOL	
Reserved	Bit 14	%IX31.6	BOOL	
Reserved	Bit 15	%IX31.7	BOOL	
Pre-heat current (A)	Read outputs [16]	%IW32	DWORD	READ 16#9010 (= 36880)
Main current (A)	Read outputs [18]	%IW36	DWORD	READ 16#9012 (= 36882)
Post-heat current (A)	Read outputs [20]	%IW40	DWORD	READ 16#9014 (= 36884)
Program number	Read outputs [22]	%IW44	WORD	READ 16#9016 (= 36886)
Force ¹	Read outputs [23]	%IW46	WORD	READ 16#9017 (= 36887)

¹ value is multiplied by the scale factor (898.88 for kN or 4 for lbf)

Weld control

EN7000 controls the weld sequence by using the I/O in conjunction with the welding parameters. The parameters are stored in programs so that different materials and machine sequences can be used. There are 256 weld programs.

Spot sequence timing

The weld programs contain the following timing parameters.

Parameter	Units	Range	Description
Squeeze	cycles	0 - 99	The time between the initial application of the electrode force and
-	-		the first application of welding current
Pre-heat ¹	cycles	0 - 99	The pre-heat welding current is applied
Cool1 ¹	cycles	0 - 99	The material is allowed to cool with electrode force applied
Upslope	cycles	0 - 99	Welding current is increased during this time
Main heat	cycles	0 - 99	The main welding current is applied
Cool2 ²	cycles	0 - 99	The material is allowed to cool with electrode force applied
Downslope	cycles	0 - 99	Welding current is decreased during this time
Post-heat ³	cycles	0 - 99	The post-heat welding current is applied
Hold	cycles	0 - 99	Electrode force continues after the welding current has finished
Off ⁴	cycles	0 - 99	Electrode force is released until the next sequence begins

¹ Pre-heat program option must be enabled to use this feature

² Pulsations program option must be greater than 1 to use this feature

³ Post-heat program option must be enabled to use this extended feature ⁴ Repeat mode program option must be enabled to use this feature

The diagram shows how the parameters control the sequence. The Cool2 interval is not shown.

Upslope can be used on hard, irregular shaped, oxidized and aluminium materials Downslope can be used to reduce marking and embrittlement

Seam sequence timing (extended feature)

The weld programs contain the following timing parameters. All parameters can be adjusted during the sequence.

Parameter	Units	Range	Description
Squeeze	cycles	0 - 99	The time between the initial application of the electrode force and
-	-		the first application of welding current
Pre-heat ¹	cycles	0 - 99	The pre-heat welding current is applied
Cool1 ¹	cycles	0 - 99	The material is allowed to cool with electrode force applied
Upslope	cycles	0 - 99	Welding current is increased during this time
Main heat	cycles	0 - 99	The main welding current is applied
Downslope	cycles	0 - 99	Welding current is decreased during this time
Post-heat ²	cycles	0 - 99	The post-heat welding current is applied
Cool2	cycles	0 - 99	The material is allowed to cool with electrode force applied
Hold	cycles	0 - 99	Electrode force continues after the welding current has finished

¹ Pre-heat program option must be enabled to use this feature

² Post-heat program option must be enabled to use this feature

The diagram shows how the parameters control the sequence.

¹ The intervals from Upslope to Cool2 repeat until the Start input is removed.

² The operation of the motor output is determined by the 2nd stage test (Section 12 Configuration).

Spot current control

The weld programs contain the following current control parameters.

Parameter	Units	Range	Description
Pre-mode ¹		PHA/CCR	Operating mode of the Pre-heat interval
Pre-heat ¹	%	0.0 - 99.9	The % heat used during the Pre-heat interval in PHA mode
Pre-current ¹	kA	0 - 500	The current used during the Pre-heat interval in CCR mode
Main mode		PHA/CCR	Operating mode of the Main heat interval
Main heat	%	0.0 - 99.9	The % heat used during the Main heat interval in PHA mode
Main current	kA	0 – 500	The current used during the Main heat interval in CCR mode
Post mode ²		PHA/CCR	Operating mode of the Post-heat interval
Post heat ²	%	0.0 - 99.9	The % heat used during the Post-heat interval in PHA mode
Post current ²	kA	0 – 500	The current used during the Post-heat interval in CCR mode
Test current		on/off	Each current can be tested between limits
High limit	%	0 - 99	Current high limit
Low limit	%	0 - 99	Current low limit
3-Phase trim ³	%	+/- 99	Balances the current in each phase

¹ Pre-heat program option must be enabled to use this feature

² Post-heat program option must be enabled to use this extended feature.

³ 3-phase configuration must be selected to use this feature

PHA (Phase Angle) mode. The current and heat parameters are independently adjustable. No current regulation takes place.

CCR (Constant Current) mode. The current parameter is adjustable but the heat is automatically determined by the EN7000 to regulate the current.

The diagram shows how the parameters control the welding current. The Cool2 interval is not shown.

Pre-heat and Post-heat can be used on hard or heat resistant metals

Seam current control (extended feature)

Parameter	Units	Range	Description	
Pre-mode ¹		PHA/CCR	Operating mode of the Pre-heat interval	
Pre-heat ¹	%	0.0 - 99.9	The % heat used during the Pre-heat interval in PHA mode	
Pre-current ¹	kA	0 - 500	The current used during the Pre-heat interval in CCR mode	
Pre-monitoring ¹		on/off	The current can be tested between limits	
Main mode		PHA/CCR	Operating mode of the Main heat interval	
Main heat	%	0.0 - 99.9	The % heat used during the Main heat interval in PHA mode	
Main current	kA	0 - 500	The current used during the Main heat interval in CCR mode	
Main monitoring		on/off	The current can be tested between limits	
Post mode ²		PHA/CCR	Operating mode of the Post-heat interval	
Post heat ²	%	0.0 - 99.9	The % heat used during the Post-heat interval in PHA mode	
Post current ²	kA	0 - 500	The current used during the Post-heat interval in CCR mode	
Post monitoring ²		on/off	The current can be tested between limits	
Low limit	%	0 - 99	Current low limit	
High limit	%	0 - 99	Current high limit	
Balance	%	0.0 - 10.0	Balances the current during pulsed seam welding	
3-Phase trim ³	%	+/- 99	Balances the current in each phase	

The weld programs contain the following current control parameters.

¹ Pre-heat program option must be enabled to use this feature

² Post-heat program option must be enabled to use this feature

³ 3-phase configuration must be selected to use this feature

PHA (Phase Angle) mode. The current and heat parameters are independently adjustable. No current regulation takes place.

CCR (Constant Current) mode. The current parameter is adjustable but the heat is automatically determined by the EN7000 to regulate the current.

The diagram shows how the parameters control the welding current.

Force control

Parameter	Units	Range	Description
Squeeze ¹	kN/lbf	variable	Force used from the start of the Squeeze interval
Pre-heat ¹	kN/lbf	variable	Force used from the start the Pre-heat interval
Cool1 ¹	kN/lbf	variable	Force used from the start the Cool1 interval
Upslope ¹	kN/lbf	variable	Force used from the start the Upslope interval
Main heat	kN/lbf	variable	Force used from the start of the Main heat interval
Cool2	kN/lbf	variable	Force used from the start of the Cool2 interval
Downslope ¹	kN/lbf	variable	Force used from the start of the Downslope interval
Post-heat ¹	kN/lbf	variable	Force used from the start the Post-heat interval
Hold ¹	kN/lbf	variable	Force used from the start the Hold interval
Wait for force ²		on/off	Wait until the applied force has been reached
Test force		on/off	Test the applied force at the end of the Main interval
High limit	%	0 - 99	Force high limit
Low limit	%	0 - 99	Force low limit

The weld programs contain the following force control parameters.

¹ Force profile program option must be enabled to use this extended feature. If the force profile option is disabled the Main heat force is used for the duration of the weld.
 ² Occurs at the same time as 2nd stage. If Wait for force is required without 2nd stage, select 2nd stage Before or After Squeeze (Section 12 Configuration) and permanently assert the 2nd stage input

The diagram shows how the force profile can control the welding force. The Cool2 interval is not shown.

Valves

EN7000 has eight digital outputs or valves (AV1 – AV8) that can be operated independently during a weld sequence. The valves are categorised as WAV, motor¹ or AUX valves.

- A WAV valve turns on at start of sequence and turns off at the end of the Hold interval.
- The operation of a motor value is determined by the 2nd stage test (Section 12 Configuration).
- An AUX valve may be programmed to come on during any interval of the weld sequence, including the Off time in repeat mode.

EN7000 features	Configuration	WAV function	Motor function	Description
Standard	All	AV1	n/a	AV1 is automatically selected
Extended (spot)	Single electrode	AV1	n/a	AV1 is automatically selected
	Multi-electrode	AV1 – AV8	n/a	Any combination of AV1 to AV8 may be selected
Extended (seam)	Single electrode	AV1	AV2	AV1 and AV2 are automatically selected
	Multi-electrode	AV1 – AV8	AV1 – AV8	Any combination of AV1 to AV8 may be selected

Valves not being used for the WAV or motor function may be used as AUX valves. WAV/motor settings always override any corresponding AUX settings.

Parameter	Units	Range	Description
WAV		AV1 – AV8	WAV output
Motor ¹		AV1 – AV8	Motor output
Squeeze	AV1 – AV8	on/off	Valve states during the Squeeze interval
Pre-heat	AV1 – AV8	on/off	Valve states during the Pre-heat interval
Cool1	AV1 – AV8	on/off	Valve states during the Cool1 interval
Upslope	AV1 – AV8	on/off	Valve states during the Upslope interval
Main heat	AV1 – AV8	on/off	Valve states during the Main heat interval
Cool2	AV1 – AV8	on/off	Valve states during the Cool2 interval
Downslope	AV1 – AV8	on/off	Valve states during the Downslope interval
Post-heat	AV1 – AV8	on/off	Valve states during the Post-heat interval
Hold	AV1 – AV8	on/off	Valve states during the Hold interval
Off ²	AV1 – AV8	on/off	Valve states during the Off interval

The weld programs contain the following valve control parameters.

¹ Seam mode only.

² Repeat mode program option must be enabled to use this feature.
Options

Each weld program has a number of optional features.

Parameter	Range	Description
Pre-heat	on/off	Enables or disables the Pre-heat parameters
Post-heat	on/off	Enables or disables the Post-heat parameters
Pulsations	1 - 99	The number of times the Main heat – Cool2 interval is repeated
Link	on/off	The next welding program will be started automatically if the input signals are maintained
Repeat	on/off	The welding program will be repeated if the input signals are maintained
Force profile	on/off	Use multiple force values during the weld
Inhibit	on/off	An inhibited program will not run ¹

¹ If an inhibited program is not linked then attempting to run it will produce the error message. If the program is linked, then the program will be skipped and the next linked program will run. This feature may be used to temporarily disable a program in a cascade.

Pulsations can be used to temper the material, control nugget growth and reduce electrode wear. The Start signal must be maintained for the full duration of the sequence if pulsations are set to 10 or more, otherwise the sequence will terminate after 10 pulses.

Program selection

The program that will be used for welding can be selected in one of two ways

- Section 12 Configuration: by using the Program Select inputs (external)
- Section 13 Programming: by using the Use Program parameter (internal)

If the external method is used, inputs P1 – P64 correspond to the binary value of the program that will be used. If the internal method is used, the Use Program parameter determines the weld program that will be used. The program number may be changed during a seam weld sequence.

Multi-electrode operation

The extended features allow each welding program to be assigned an electrode.

Parameter	Units	Range	Description
Electrode		0 - 7	The electrode number

When a program is used, EN7000 will automatically trigger the correct transformer by referencing the electrode/transformer assignment as described below. In addition, the electrode number is also used to access the appropriate stepper, counter and calibration information

Electrode management

Electrode management is provided via a combination of stepper and counter functions.

The stepper provides a means of gradually increasing the current to compensate for electrode wear. The counter counts the number of welds that the electrode has done and allows the electrode to be dressed a number of times before it is replaced. The extended features provide eight steppers and counters that can be assigned to up to eight transformers or SCRs.

Steppers

A stepper is programmed by means of a curve which will provide values of heat and current increments related to the number of spots done. The curve is defined by a set of 10 points.

Parameter	Units	капуе	Description
Step		0 - 9	The step number
Spots	welds	0 - 9999	The number of welds in the step
+Heat	%	0.0 - 50.0	The increase in heat during the step
+Current	%	0.0 - 50.0	The increase in current during the step
Preset		1 - 5	Apply predefined values to the stepper curve
Enable stepper		on/off	Enables or disables the stepper
Stop at end		on/off	EN7000 can inhibit welding at the end of the last step
Spots done	welds	0 - 99999	The number of welds that have been done since the last reset

PHA mode will make use of both the +Heat and +Current parameters. CC mode uses only the +Current parameters.

The Stepper output is active at the end of the last step. The Prewarn output is active during the last step.

To get started enter the values for Step 9 then select a Preset to load the intermediate values

Counters

A counter is programmed by entering values related to the electrode maintenance and lifetime.

Parameter	Units	Range	Description
Enable counter		on/off	Enables or disables the counter
Count	welds	0 - 9999	The number of welds that have been done since the last reset
End count	welds	0 - 99999	The maximum number of welds that can be done
Stop at end		on/off	EN7000 can inhibit welding until the counter is reset
Enable tip dress		on/off	Enables or disables the tip dressing feature
Dressings done		0 - 9999	The number of times the electrodes have been dressed
Max dressings		0 - 9999	The maximum number of times the electrodes can be dressed
Reset to	welds	0 - 9999	The weld count following a tip dress operation

If tip dressing is enabled EN7000 will activate the Tip Dress Request output when the Count value is reached.

Current calibration

The welding current can be measured by a Current Transformer (CT) or by a coil (toroid) on the primary or secondary circuit. If the sensor is measuring the primary current EN7000 can display secondary current when the relationship between primary and secondary current has been calibrated.

Parameter	Units	Range	Description
Power factor	Cos (Φ)	0 - 0.86	The power factor of the welding transformer ¹
Toroid	mV/kA	100 - 60000	The sensitivity of the toroid
СТ	mV/kA	100 - 60000	The sensitivity of the CT
Point 1 (primary)	kA	0 - 32.0	The measured value of primary current at a low heat (Ip1)
Point 1 (secondary)	kA	0 - 500.0	The measured value of secondary current at a low heat (Is1)
Point 2 (primary)	kA	0 - 32.0	The measured value of primary current at a high heat (Ip2)
Point 2 (secondary)	kA	0 - 500.0	The measured value of secondary current at a high heat
			(ls2)
Apply conversion		off/points/ratio	Use the conversion to display secondary current (CT only)
Turns ratio		1 - 999	The turns ratio of the welding transformer (CT only)
CCR gain ²		1 - 10	The CCR gain. Set to 5 as a starting point

¹ Section 14 Tutorials: Setting the power factor.

² Seam mode only.

If using a CT the turns ratio of the transformer can be used to scale the current. Alternatively the scaling can be determined by measuring the values of primary and secondary current at two different heat levels.

- Produce a short circuit weld at a low heat in PHA mode and measure the primary current (lp1) and secondary current (ls1) using an external weld current meter.
- Repeat the short circuit weld at a higher heat and measure the primary current (Ip2) and secondary current (Is2) using an external weld current meter.

Enter the measured values into the Point 1/Point 2 parameters. Select the appropriate conversion method.

The current can be calibrated for each electrode

Calibration is not required if a toroid is being used for secondary feedback. In this situation only the toroid sensitivity is required.

Force calibration

The analog input and analog output can be used for force control in terms of kN or lbf when they have been calibrated.

Parameter	Units	Range	Description
OUT Point 1	mV	0 - 10000	Analog output (point 1)
OUT Point 1	kN/lbf		Measured output force (point 1)
OUT Point 2	mV	0 - 10000	Analog output (point 2)
OUT Point 2	kN/lbf		Measured output force (point 2)
IN Point 1	mV	0 - 10000	Analog input (point 1)
IN Point 1	kN/lbf		Measured input force (point 1)
IN Point 2	mV	0 - 10000	Analog input (point 2)
IN Point 2	kN/lbf		Measured input force (point 2)

The relationship between the analog input and output and the electrode force can be determined by measuring the values at two points. The values define a linear relationship between mV and kN/lbf.

The force can be calibrated for each electrode.

Multi-electrode operation (extended feature)

This extended mode feature allows the assignment of an electrode to a transformer or SCR.

Parameter	Units	Range	Description
Electrode		0 - 7	The electrode number
Transformer/SCR		0 - 7	The transformer or SCR that the electrode is connected to

The diagram shows how the electrodes can be assigned to transformers/SCRs

Electrodes 0 and 1 are assigned to transformer/SCR 0

Τ0

E0

E1

E7

Electrodes 6 and 7 are assigned to transformer/SCR 3

The electrodes are assigned to weld programs in the same way.

Status information

EN7000 reports a number of conditions to assist with diagnostics, quality control and maintenance. Each condition corresponds to a code which is accessible via MODBUS.

Code	Condition	Action
0	Normal	
1	Stop	Check the Stop input
2	Sync. error	Check 27 V ac sync signal and/or the Frequency parameter in Configuration
3	Retract not ready	Operate the Retract input
4	SCR hot	Check SCR cooling
5	Transformer hot	Check weld transformer cooling
6	Pilot fault	Safety relay fault. Do not use the EN7000 and return it for service.
7	Restart required	Restart the EN7000
8	Headlocked	The welding head is locked because of a fault condition
9	Toroid short-circuit	Connection to Toroid (secondary feedback coil) is short-circuit
10	Toroid open-circuit	Connection to Toroid (secondary feedback coil) is open-circuit
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	
16	Test mode	For service use only
17	Start on	The Start input is on following a weld sequence or stop/power-up condition
18	Weld off	Check the Weld On input
19	Program inhibited	The selected weld program is inhibited
20	Output fault	One or more outputs have failed
21	Reserved	
22	Too many links	Too many weld programs are linked together
23	Bad link	A link has been made to a weld program that cannot be used
24	Toroid over range	Reduce current or use an external signal attenuator
25	CT over range	Check calibration parameters
26	Reserved	
27	Reserved	
28	Reserved	
29	Reserved	
30	Reserved	
31	Reserved	
32	Reserved	
33	Low force	Check the analog input and output circuits and/or adjust force parameters
34	High force	Check the analog input and output circuits and/or adjust force parameters
35	Low pre-current	Check CT/toroid feedback and/or adjust Pre-heat parameters
36	High pre-current	Check CT/toroid feedback and/or adjust Pre-heat parameters
37	Low main current	Check CT/toroid feedback and/or adjust Main heat parameters
38	High main current	Check CT/toroid feedback and/or adjust Main heat parameters
39	Low post-current	Check CT/toroid feedback and/or adjust Post-heat parameters
40	High post-current	Check CT/toroid feedback and/or adjust Post-heat parameters
41	No 2 nd stage	Check the 2 nd Stage input
42	No force	Check analog input circuit

44

43	Reserved	
44	Reserved	
45	Reserved	
46	Reserved	
47	Reserved	
48	Reserved	
49	End of count 0	Reset counter 0
50	End of count 1	Reset counter 1
51	End of count 2	Reset counter 2
52	End of count 3	Reset counter 3
53	End of count 4	Reset counter 4
54	End of count 5	Reset counter 5
55	End of count 6	Reset counter 6
56	End of count 7	Reset counter 8
57	Reserved	
58	Reserved	
59	Reserved	
60	Reserved	
61	Reserved	
62	Reserved	
63	Reserved	
04	Reserved	Deast stammer 0
00 66		Reset stepper U
60	End of electrode 1	Reset stepper 1
60	End of electrode 2	Reset stepper 2
60	End of electrode 3	Reset stepper 3
70	End of electrode 4	Reset stepper 4
70	End of electrode 5	Reset stepper 5
72	End of electrode 7	Reset stepper 0
72	Received	
74	Reserved	
75	Reserved	
76	Reserved	
77	Reserved	
78	Reserved	
79	Reserved	
80	Reserved	
81	Tip dress 0	Dress the electrodes and then reset counter 0
82	Tip dress 1	Dress the electrodes and then reset counter 1
83	Tip dress 2	Dress the electrodes and then reset counter 2
84	Tip dress 3	Dress the electrodes and then reset counter 3
85	Tip dress 4	Dress the electrodes and then reset counter 4
86	Tip dress 5	Dress the electrodes and then reset counter 5
87	Tip dress 6	Dress the electrodes and then reset counter 6
88	Tip dress 7	Dress the electrodes and then reset counter 7
89	Reserved	
90	Reserved	
91	Reserved	
92	Reserved	
93	Reserved	
94	Reserved	
95	Reserved	
96	Reserved	
97	Prewarn 0	Stepper 0 has completed its 9th step
98	Prewarn 1	Stepper 1 has completed its 9th step
99	Prewarn 2	Stepper 2 has completed its 9th step
100	Prewarn 3	Stepper 3 has completed its 9th step
101	Prewarn 4	Stepper 4 has completed its 9th step
102	Prewarn 5	Stepper 5 has completed its 9th step
103	Prewarn 6	Stepper 6 has completed its 9th step
104	Prewarn /	Stepper / has completed its stin step
105	Reserved	
100	Reserved	

107	Reserved	
108	Reserved	
109	Reserved	
110	Reserved	
111	Reserved	
112	Reserved	
113	Reserved	
114	Reserved	
115	Reserved	
116	Reserved	
117	Reserved	
118	Reserved	
119	Reserved	
120	Reserved	
121	Reserved	
122	Reserved	
123	Reserved	
124	Reserved	
125	Reserved	
126	Reserved	
127	Reserved	
128	Reserved	

History log

EN7000 stores the results of the last 6000 spot welds in a history log. Each record contains the following information:

Parameter	Units	Range	Description
Time and date			The time and date when the entry was recorded
Program		0 - 255	The weld program used
Pre-current	kA	0 – 500	The current recorded during the Pre-heat interval
Main current	kA	0 – 500	The current recorded during the Main heat interval
Post-current	kA	0 – 500	The current recorded during the Post-heat interval
Force	kN/lbf	Variable	The force recorded during the weld

The log can be viewed or reset as required.

Multiwelding (extended feature)

The extended features allow up to four transformers/SCRs to be directly connected or up to eight when used with a decoder.

Up to 8 electrodes can be assigned to the welding transformers

The electrode number is determined by the weld program:

Parameter	Units	Range	Description
Electrode		0 - 7	The electrode number

The weld programs can be linked together.

The electrode is assigned to a transformer:

Parameter	Units	Range	Description
Electrode		0 - 7	The electrode number
SCR/Transformer		0 - 7	The transformer or SCR that the electrode is connected to

The diagram shows how the electrodes can be assigned to transformers/SCRs

There are two methods available for multiwelding.

- Multi-gun operation allows each welding program to be triggered independently but allows for selection • of a transformer and electrode.
- Multi-gun cascade operation allows up to eight welding programs to be linked together and triggered • from a single start command. The programs then ripple through with minimal time between them, selecting transformers and electrodes on the fly. The linked programs are known as a cascade.

Multi-gun operation

Each welding program is started independently but different electrodes and transformers can be selected.

The WAV output can be a separate output for each program

Multi-gun cascade operation

Different electrodes and transformers can still be selected but the welding programs are linked together and started by a single Start command. Cancelling the Start command at any time will abort the cascade sequence

Start input	
EOS output	
WAV output	
Program First	
Current	
(transformer 0) VVV _Current	
(transformer 1) VVV Current ΛΛΛ	
(transformer 2)	
(transformer 3)	J

In multi-gun cascade operation the program select inputs select the first program in the cascade.

If a fault occurs during a cascade sequence:

Stop on fault ¹	Description
Off	Cascade will continue. Fault output will remain on only until next weld.
On	Cascade will pause. Cascade will continue when the fault is reset.

¹ Section 12 Configuration

Seam welding (extended feature)

EN7000 can be used for seam welding applications. The seam program parameters provide a flexible sequence that works in conjunction with the inputs and outputs to produce many different types of seam weld e.g.

- continuous seam
- seam pulsation
- seam modulation
- seam pre-heat
- roll-spot

The parameters are described in Section 6 Weld control and can be adjusted during the weld. Intervals that are not required may be set to 0.

Continuous seam

A continuous seam weld maintains a set current for the duration of the weld. The following example shows how this type of sequence may be implemented.

Parameter	Setting	Description		
Sequence timing				
Squeeze	cycles	The time between the initial application of the electrode force and		
		the first application of welding current		
Main heat	cycles	The main welding current is applied		
Hold	cycles	Electrode force continues after the welding current has finished		
Current control				
Main mode	PHA/CCR	Operating mode of the Main heat interval		
Main heat	%	The % heat used during the Main heat interval in PHA mode		
Main current	kA	The current used during the Main heat interval in CCR mode		
Main monitoring ¹	on/off	The current can be tested between limits		
Low limit ¹	%	Current low limit		
High limit ¹	% Current high limit			
Options				
Pre-heat	off	Disable the Pre-heat parameters		
Post-heat	off	Disable the Post-heat parameters		

¹ optional

¹ The Main heat interval is repeated until the Start input is removed.

Seam pulsation

Seam pulsation can be used in applications where a continuous weld is not required. The Main heat and the Cool2 intervals are repeated for the duration of the weld. The following example shows how this type of sequence may be implemented.

Parameter	Setting	Description		
Sequence timing				
Squeeze	cycles	The time between the initial application of the electrode force and the first application of welding current		
Main heat	cycles	The main welding current is applied		
Cool2	cycles	The material is allowed to cool with electrode force applied		
Hold	cycles	Electrode force continues after the welding current has finished		
Current control	Current control			
Main mode	PHA/CCR	Operating mode of the Main heat interval		
Main heat	%	The % heat used during the Main heat interval in PHA mode		
Main current	kA	The current used during the Main heat interval in CCR mode		
Main monitoring ¹	on/off	The current can be tested between limits		
Low limit ¹	%	Current low limit		
High limit ¹	% Current high limit			
Options				
Pre-heat	off	Disable the Pre-heat parameters		
Post-heat	off	Disable the Post-heat parameters		
Balance	%	Allows the current to be balanced when using pulsed seam welding		

¹ optional

¹ The Main heat – Cool2 intervals are repeated until the Start input is removed.

Seam modulation

Seam modulation can be used in applications where a change in current is required. Two Heat intervals are repeated for the duration of the weld. The following example shows how this type of sequence may be implemented.

Parameter	Setting	Description		
Sequence timing				
Squeeze	cycles	The time between the initial application of the electrode force and the first application of welding current		
Main heat	cycles	The main welding current is applied		
Post-heat	cycles	The post-heat welding current is applied		
Hold	cycles	Electrode force continues after the welding current has finished		
Current control				
Main mode	PHA/CCR	Operating mode of the Main heat interval		
Main heat	%	The % heat used during the Main heat interval in PHA mode		
Main current	kA	The current used during the Main heat interval in CCR mode		
Main monitoring ¹	on/off	The current can be tested between limits		
Post mode	PHA/CCR	Operating mode of the Post-heat interval		
Post heat	%	The % heat used during the Post-heat interval in PHA mode		
Post current	kA	The current used during the Post-heat interval in CCR mode		
Post monitoring ¹		The current can be tested between limits		
Low limit ¹	%	Current low limit		
High limit ¹	%	Current high limit		
Options	Options			
Pre-heat	off	Disable the Pre-Heat parameters		
Post-heat	on	Enable the Post-heat parameters		

¹ optional

Seam pre-heat

Pre-heat can be used in applications where the initial current needs to be different to the main current. The following example shows a continuous seam weld with a pre-heat.

Parameter	Setting	Description	
Sequence timing			
Squeeze	cycles	The time between the initial application of the electrode force and	
		the first application of welding current	
Pre-heat	cycles	The pre-heat welding current is applied	
Main heat	cycles	The main welding current is applied	
Hold	cycles	Electrode force continues after the welding current has finished	
Current control			
Pre-mode	PHA/CCR	Operating mode of the Pre-heat interval	
Pre-heat	%	The % heat used during the Pre-heat interval in PHA mode	
Pre-current	kA	The current used during the Pre-heat interval in CCR mode	
Pre-monitoring ¹		The current can be tested between limits	
Main mode	PHA/CCR	Operating mode of the Main heat interval	
Main heat	%	The % heat used during the Main heat interval in PHA mode	
Main current	kA	The current used during the Main heat interval in CCR mode	
Main monitoring ¹	on/off	The current can be tested between limits	
Low limit ¹	%	Current low limit	
High limit ¹	%	Current high limit	
Options			
Pre-heat	on	Enable the Pre-heat parameters	
Post-heat	off	Disable the Post-heat parameters	

¹ optional

¹ The Main heat interval is repeated until the Start input is removed.

Seam pre-heat only

Pre-heat can be used in situations when a spot weld is required. The following example shows how to use the pre-heat to produce a spot weld.

Parameter	Setting	Description	
Sequence timing			
Squeeze	cycles	The time between the initial application of the electrode force and	
		the first application of welding current	
Pre-heat	cycles	The pre-heat welding current is applied	
Main heat	0	The main welding current is not used	
Hold	cycles	Electrode force continues after the welding current has finished	
Current control			
Pre-mode	PHA/CCR	Operating mode of the Pre-heat interval	
Pre-heat	%	The % heat used during the Pre-heat interval in PHA mode	
Pre-current	kA	The current used during the Pre-heat interval in CCR mode	
Pre-monitoring ¹		The current can be tested between limits	
Low limit ¹	%	Current low limit	
High limit ¹	High limit ¹ % Current high limit		
Options			
Pre-heat	on	Enable the Pre-heat parameters	
Post-heat	off	Disable the Post-heat parameters	

¹ optional

¹ The Pre-heat interval is interlocked.

Roll-spot

Roll-spot welds can be used in applications where a motor drive output is required between welds. The following example shows how this type of sequence may be implemented.

Parameter	Setting	Description	
Sequence timing			
Repeat	on	Sets roll-spot mode when configured for seam welding	
Squeeze	cycles	The time between the initial application of the electrode force and	
		the first application of welding current	
Main heat	cycles	The main welding current is applied	
Hold	cycles	Electrode force continues after the welding current has finished	
Off	cycles	The time during which the motor drive operates	
Current control			
Main mode	PHA/CCR	Operating mode of the Main heat interval	
Main heat	%	The % heat used during the Main heat interval in PHA mode	
Main current	kA	The current used during the Main heat interval in CCR mode	
Main monitoring ¹	on/off	The current can be tested between limits	
Low limit ¹	%	Current low limit	
High limit ¹	%	Current high limit	
Valves			
AVn	Off time	Connect the motor drive to the valve that is activated during Off time	

¹ optional

¹ The weld sequence is repeated until the Start input is removed.

The examples show how the seam weld parameters can be used in any combination to implement several different types of weld sequence.

Configuration

The Configuration parameters affect the operation of the EN7000.

Parameter	Value	Description		
Factures	Standard	Use standard features		
reatures	Extended	Use extended features		
Wold turns	Spot	Use spot welding features		
vveid type	Seam	Use seam welding features		
Concer	CT	Use a Current Transformer (CT) for primary current monitoring		
Sensor	Toroid	Use a measuring coil (Toroid) for secondary current monitoring		
	50 Hz	The frequency of the electrical mains is 50 Hz		
Frequency	60 Hz	The frequency of the electrical mains is 60 Hz		
1.1	Metric	Measure force in KN		
Units	Imperial	Measure force in lbf		
Des mans sals st	External	The Program Select inputs select the weld program		
Program select	Internal	The Use Program parameter selects the weld program		
	Single	Use one electrode for the weld programs		
Electrodes	Multi	Use up to 8 electrodes for the weld programs		
	Direct	Control up to 4 SCRs directly		
SCR select	Coded	Control up to 8 SCRs via a decoder		
-	3-phase	Controls the SCRs in 3-phase applications		
	Off	The 2 nd stage input is not used. The motor output is not used ¹ .		
	-			
		Start input		
		2 nd stage input		
		Motor output		
		Converse		
		begins Squeeze		
	Defens Omisser			
	Belore Squeeze	The 2 rd stage input is checked before the Squeeze interval. The		
2 nd stage		motor output is activated when the 2 ^m stage input is confirmed *.		
		Start input		
		Start Input		
		and the state		
		Motor output		
		Sequence begins		
		→ Squeeze		
	After Squeeze	The 2 nd stage input is checked after the Squeeze interval. The		

		motor output is activated when the 2 nd stage input is confirmed ¹ .		
		Start input		
		2 nd stage input		
		Motor output		
		Sequence Sequence		
		begins Squeeze continues		
	Once	The 2 nd stage input is checked only at the start of a cascade		
2 nd stage		sequence		
5	Every	I ne 2 rd stage input is checked at the start of every program within		
	Simple			
	Cimpio	Retract input		
		HAV output		
		START input		
		WAV output		
	Hilift +	Retract input		
		HAV output		
		START input		
Retract		WAV output		
Reliabl	Hilift -	Retract input		
		START input		
		WAV output		
	Maintained	Retract input		
		HAV output		
		START input		
		WAV output		
	No	In the event of a fault the Stop output will not be activated and		
Otom on foult		further welds will be permitted		
Stop on fault	Yes	In the event of a fault the Stop output will be activated and furthe		
		welds will not be permitted		
EOS on fault	No	In the event of a fault the EOS output will not be activated		
	Yes	In the event of a fault the EOS output will be activated		
Headlock on fault	Yes	In the event of a fault the welding head will he locked		
	Discrete	Use the discrete inputs and outputs		
I/O source	COM0	Use MODBUS TCP/IP (Ethernet) on COM0		
	COM1	Use MODBUS TCP/IP (Ethernet) on COM1		
	COM2	Use MODBUS RTU (RS485) on COM2		
	COM3	Use RS232 on COM3		
Analog output	Force	The analog output is used to control force		
Waveform	10V = 0 = 500kA	The analog output corresponds to the measured weld current		
Contactor	0 - 99 seconds	The analog output scaling The contactor output is sustained for this time following a weld		
T . 1	Off / On	The connection to an external toroid will be tested. The measured		
l oroid test		resistance must lie within the range 10 to 300 Ohms.		

¹ Seam mode only

Programming

EN7000 supports several programming methods:

- NetFlash PC program (Ethernet)
- WSP3 pendant (RS232)
- Built-in touch screen (EN7000-TS only)
- MODBUS (Ethernet or RS485)
- EtherNet/IP (via optional adapter card) see separate adapter card manual.

Security

There are two features which can be configured to protect access:

- Up to five PIN codes can be stored in each control. Users must then enter their code before being granted access permission to edit parameters. All parameters remain viewable (read-only). This feature can be configured to be applied to the touch-screen, the WSP3 or both. After initially gaining access, edit permission remains granted for a configurable time-out period.
- 2. Use of an external switch connected to the P64 input pin. Users are only granted access permission to edit parameters when the switch is activated. By using a key-switch, only the key-holders will be able to make edits. All parameters remain viewable (read-only). When configured, this feature applies to both the touch-screen and the WSP3.

Note that if this feature is used, then the P64 (program select bit 64) is no longer available on the discrete signal interface and thus external selection of programs is restricted to the range 0 to 63. This is not normally a problem on manual installations which is typically where security features are required. The full range of programmes (0 to 255) is still available through manual selection or via a network connection.

The above features are configured via the use of NetFlash software. NetFlash itself also has a security feature which can be used to tailor access rights. Users can be allocated usernames, passwords and access levels which restrict users to editing none, some or all parameters, as required. Thus, an administrator can pass copies of NetFlash to various personnel, each having individually permission levels.

Access via network protocols is not restricted as this will generally be via automation systems.

NetFlash

NetFlash is a PC-compatible program which provides a graphical user interface to program and monitor one or more EN7000s. In addition NetFlash provides backup/restore functions for control data, live data logging to a file and a utility for updating the firmware in the EN7000.

System requirements

NetFlash is a Microsoft Windows compatible PC program. It requires the latest Java Runtime Environment which is available from https://java.com/download. The minimum screen resolution is 1280 x 1024.

Installation

NetFlash does not need to be installed. Copy the NetFlash folder and its contents from the supplied media to the PC and run the NetFlash.exe program.

Removal

NetFlash does not need to be uninstalled. To remove NetFlash delete the NetFlash folder and its contents from the PC.

Connection

NetFlash uses 10/100 Base-T Ethernet to communicate with the EN7000. Ensure that the PC has an appropriate Ethernet adapter and that a network connection is in place. Use COM0/1 to connect the EN7000 to the network

If no network is available the PC can be connected directly to the EN7000:

Set the IP address in the EN7000 (Section 15 Appendix). Set the IP address in the PC (contact your system administrator). For example:

	IP address	Subnet mask
PC	192.168.0.99	255.255.255.0
Welding control	192.168.0.100	255.255.255.0

Initialisation

Run the NetFlash.exe program. The home screen is shown:

NetFlash		
entron 🛛 📑	品 🕛 👯 🍰	
Host IP Address 192 168 0.99 Target II	Address 192 168 0 100	
	Displays ENTRON UK contact de	tails
	Edit EN7000 parameters. Allows a parameters via the network or from	access to the EN7000 n a file.
品	Network configuration. Locates we	elding controls on the network
101011 011 011 100101	Flash programming tool. Allows the updated	e firmware in the EN7000 to
U	Restart weld control. Restarts the to an application-specific paramet	EN7000 following a change er
<u>_</u>	Security features	
1 2	Control type	
Host IP Address 192.168.0.99	Shows the PC's IP address	
Target IP Address 192.168.0.100	Shows the IP address of the targe	et EN7000
	Shows communication activity on	the network

Select Network Configuration

The following screen is shown:

Edit timer location. Welding controls that have been detected on the network can be assigned descriptive names and locations. This function allows the names and locations to be edited.

Add a welding control to the network

Remove a welding control from the network

Scan for welding controls on the network

Use the selected welding control as the target welding control when editing

Perform a low-level communications test on the selected welding control

Select Scan network for timers. NetFlash will show the compatible welding controls on the network:

Ų	Select an IP (MAC) address: 192.168.0.100 (0:80:a3:9c:f7:4	0) 🔺
		ш
		-

Select an IP address and then select OK. NetFlash will ask if the address should be used as the target welding control for editing:

Network scan	×
(IP address = 192.168.0	0.100
Set as target IP address	Cancel

If Set as target IP address is selected the IP address will be shown as the target IP address:

2.168.0.100

Alternatively, the target address can be set by using the Edit button:

Change target IP address			x
Enter IP address: 192.168.0.100			
	ОК	Cancel	

To add a descriptive name and/or location for the welding control, use the Add welding control function. It is not necessary to do this if only one welding control is being used.

When a welding control has been selected as the target the parameters can be changed.

Parameters

L	!	7

Caution: when parameters are changed in NetFlash they are changed immediately in the EN7000.

Select the Edit weld parameters function from the home screen.

Select Load from timer. Data will be loaded from the target welding control:

📑 Edit co	ontrol parameters				×
Program	Flectrode Calibrate Ourcent	Calibrate Force Configure 1/0 Status CC	Minorts Log		
L			in portes la cog		
Program	0				
	A	F	Timbre	0t	
	Aux valves (Avx)	Force	nning	current	
1 2	3 4 5 6 7 8	Force profile		Pre-heat	
]	Squeeze 20 - ~		
]	Upslope 0 🚔 ~	Main heat	
		4.00 kN	Main heat 10 🚔 ~	PHA v mode	Heat 0.0 🚔 %
		,	Downslope 0 - ~	Current 1.00 A	
				Monitor Off On	
		1	Cool2 0 ~		
]		Post-heat	
]			
	WAV will use AV1				
		Wait for force at 2nd stage			Balance 10.0 🚔 %
N	NOTOR will use AV2	Test force at end of main heat			
		Low limit - 5 🌩 %		Low limit - 5 🚔 %	
		High limit + 5 🊔 %		High limit + 5 🊔 %	

The Program screen is shown. This screen contains the parameters that control the weld sequence for the selected weld program

NetFlash uses tabs to navigate the parameter categories. Select the appropriate tab to edit the parameters:

Other functions are provided:

Show associated parameters in a different category

Save the parameters in a file

Open or close the metrics window. NetFlash shows the results of the last weld and the status messages

Copy programs

Export the parameters to a CSV file

WSP3

Caution: when parameters are changed with the WSP3 they are changed immediately in the EN7000.

The WSP3 is a hand-held programming pendant with a 20x4 character display and a sealed keypad.

The WSP3 can be used to access diagnostic information in addition to all parameters.

The WSP3 uses RS232 to communicate with the EN7000 and should be connected to COM3:

Keypad

Diagnostic screen

Measured Pre-current Measured Main current Measured Post-current

Status

Program used Measured force Measured conduction

If more than one status message is present they are shown sequentially.

Menus

The functions of the EN7000 are arranged into a set of menus and screens as follows:

Diagnostic screen

Backup/Restore

The WSP3 allows the data in one EN7000 to be transferred to another by using the Backup and Restore functions.

- Use the Backup function to make a copy of all the EN7000's settings. The copy is held within the WSP3. The data in the EN7000 is unchanged. Note that only one backup can be stored in the WSP3 and that this is overwritten each time the backup function is used.
- Use the Restore function to restore all of the settings in the EN7000 from a backup stored in the WSP3 pendant. Note that this operation will overwrite all data which was previously stored in the EN7000. After the restore operation the backup remains in the WSP3.

Initialise data

The Initialise function sets all of the parameters in the EN7000 to predefined values.

The Initialise function will overwrite all previously stored data in the EN7000. After an initialise operation, review the configuration and calibration settings and ensure they are appropriate for the application. Also review the welding programs that will be used.

The initialise function can be used when first setting up an EN7000.

[Grab your reader's attention with a great quote from the document or use this space to emphasize a key point. To place this text box anywhere on the page, just drag it.]

Touch screen

EN7000-TS models have a touch screen display that can be used to access all parameters and diagnostic information.

The touch screen uses a number of elements to navigate and edit the parameters. Tap the element to access the function.

	Go back to the previous menu.
Program	Parameter group. Tap to access the parameters in the group.
Parameter 10.1	Editable parameter. Tap the window to edit the parameter.
Force profile	On or off. Tap the check box to enable or disable the function.
SCR select	Option. Tap to change the selection.
Main menu	Title bar. Tap the centre to access the status and monitoring information.
Main heat 10.1 kA	Status and monitoring information.
Legend 0 1 2 3 4 5 - X 6 7 8 9 0 . V	Numeric entry dialog. Tap the numeric keys to enter a value then tap v to confirm or tap v to cancel. Tap v to edit.
 ▲ ▲	Scroll bar. Tap 🔼 to scroll up, tap 💟 to scroll down.

72
Menus

The menus of the EN7000 are arranged as follows:

	Main n	nenu
	Use program 0	Discrete I/O
	Program	Bus I/O
	Electrode	Analog I/O
	History log	System
_	Configure	

Progra	m menu
Program	Link to program
0	5
Electrode	Timo
0	Time
Current	Force
Valves	Options
Сору	START

Status				
Ready				
Pre-heat	0 A	Program	0	
Main heat	10.1 kA	Force	5.8 kN	
Post-heat	0 A	Conduction	30.5 %	

The Status information can be accessed by tapping the centre of any title bar.

 Electrode menu		
Electrode	SCR/Transformer	
Ö	2	
Counter	Stepper	
Current cal.	Force cal.	
Сору		

 History log menu		
Records in log	Viewlog	
87	view log	
Clear log		

 Configuration		
[Configuration parameters]		
COM0	COM1	
COM2	COM3	
Initialise	Restart	

Main	menu	
Use program 0	Discrete I/O	
Program	Bus I/O	
Electrode	Analog I/O	The Main menu allows access to all other menus, the input/output status and system information.
History log	System	
Configure		

	Sta	itus		
Ready				
Pre-heat	0 A	Program	0	The Status menu shows diagnostic information and the results of
Main heat	10.1 kA	Force	5.8 kN	the last weld.
Post-heat	0 A	Conduction	30.5 %	

Progra	ım menu	
Program	Link to program	
0	5	
Electrode	Time	
0	Time	The Program menu contains the parameters for a weld program.
Current	Force	Time, Current and Force parameters are accessible and there are settings for the Valves and program Options. Weld programs can
Valves	Options	also be copied. The START function simulates the Start input.
Сору	START	

Electro	de menu	
Electrode	SCR/Transformer	
0	2	
Counter	Stepper	The Electrode menu contains the parameters for an Electrode. Counter and Stepper parameters are accessible and the Current
Current cal.	Force cal.	and Force can be calibrated. Electrodes can also be copied.
Сору		

History	log menu	
Records in log 87	View log	
		The History log menu allows the welding log to be viewed or
		cleared.
Clear log		

Config	guration	
[Configuration parameters]		
COM0	COM1	The Configuration menu contains the parameters that affect the
COM2	COM3	operation of the EN7000. The settings for the COM ports are also shown. The Initialise function sets all of the parameters to
Initialise	Restart	predefined values and the EN7000 can be restarted if required.

MODBUS

A PLC or HMI MODBUS master can be used to program EN7000. All parameters are directly mapped to MODBUS registers for easy access. Both MODBUS-TCP/IP (Ethernet) and MODBUS-RTU (RS485) protocols are supported.

Write the data using MODBUS function 16 Read the data using MODBUS function 3

MODBUS access types

Write data					
	Туре	Value	Description		
Function code	UINT	16	Write multiple registers		
Read offset	UINT	0			
Read length	UINT	0			
Write offset	UINT	variable			
Write length	UINT	1			

Read data			
	Туре	Value	Description
Function code	UINT	3	Read holding registers
Read offset	UINT	variable	
Read length	UINT	64	
Write offset	UINT	0	
Write length	UINT	0	

MODBUS mapping

Variable	Address	Туре	Description
Weld programs			256 x 64 WORDS
Weld program 0	16#0000 (= 0)	WORD ARRAY [063]	
Weld program 1	16#0040 (= 64)	WORD ARRAY [063]	
Weld program 2	16#0080 (= 128)	WORD ARRAY [063]	
Weld program 3	16#00C0 (= 192)	WORD ARRAY [063]	
Weld program 254	16#3F80 (= 16256)	WORD ARRAY [063]	
Weld program 255	16#3FC0 (= 16320)	WORD ARRAY [063]	
Electrodes			8 x 64 WORDS
Electrode 0	16#4000 (= 16384)	WORD ARRAY [063]	
Electrode 1	16#4040 (= 16448)	WORD ARRAY [063]	
Electrode 2	16#4080 (= 16512)	WORD ARRAY [063]	
Electrode 3	16#40C0 (= 16576)	WORD ARRAY [063]	
Electrode 4	16#4100 (= 16640)	WORD ARRAY [063]	
Electrode 5	16#4140 (= 16704)	WORD ARRAY [063]	
Electrode 6	16#4180 (= 16768)	WORD ARRAY [063]	
Electrode 7	16#41C0 (= 16834)	WORD ARRAY [063]	
Calibration			8 x 64 WORDS
Calibration 0	16#5000 (= 20480)	WORD ARRAY [063]	
Calibration 1	16#5040 (= 20544)	WORD ARRAY [063]	
Calibration 2	16#5080 (= 20608)	WORD ARRAY [063]	
Calibration 3	16#50C0 (= 20672)	WORD ARRAY [063]	
Calibration 4	16#5100 (= 20736)	WORD ARRAY [063]	
Calibration 5	16#5140 (= 20800)	WORD ARRAY [063]	
Calibration 6	16#5180 (= 20864)	WORD ARRAY [063]	
Calibration 7	16#51C0 (= 20928)	WORD ARRAY [063]	
Configuration			1 x 64 WORDS
Configuration	16#6000 (= 24576)	WORD ARRAY [063]	

Weld program parameters

Variable	Channel	Address offset	Туре	Description
Weld program		%IW0	WORD ARRAY [063]	
Attributes	Weld program [0]	%IW0	WORD	
Pre heat	Bit 0	%IX0.0	BOOL	0 = off, 1 = on
Post heat	Bit 1	%IX0.1	BOOL	0 = off, 1 = on
Dro modo	Bit 2	%IX0.2	BOOL	00 = PHA mode
Pre-mode	Bit 3	%IX0.3	BOOL	01 = CCR mode
	Bit 4	%IX0.4	BOOL	00 = PHA mode
Main mode	Bit 5	%IX0.5	BOOL	01 = CCR mode
Deet mede	Bit 6	%IX0.6	BOOL	00 = PHA mode
Post-mode	Bit 7	%IX0.7	BOOL	01 = CCR mode
Link mode	Bit 8	%IX1.0	BOOL	0 = off, 1 = on
Repeat mode	Bit 9	%IX1.1	BOOL	0 = off, 1 = on
Wait force	Bit 10	%IX1.2	BOOL	0 = off, 1 = on
Force profile	Bit 11	%IX1.3	BOOL	0 = off, 1 = on
Test force	Bit 12	%IX1.4	BOOL	0 = off, 1 = on
Test pre-current	Bit 13	%IX1.5	BOOL	0 = off, 1 = on
Test main current	Bit 14	%IX1.6	BOOL	0 = off, 1 = on
Test post-current	Bit 15	%IX1.7	BOOL	0 = off, 1 = on
Presqueeze time	Weld program [1]	%IW1	WORD	0 - 99
Squeeze time	Weld program [2]	%IW2	WORD	0 - 99
Pre-heat time	Weld program [3]	%IW3	WORD	0 - 99
Pre-heat (PHA)	Weld program [4]	%IW4	WORD	0 – 999 (x10)
Pre-heat (CCR)	Weld program [5]	%IW5	WORD	0 - 999(x10)
Pre-current	Weld program [6]	%IW6	DWORD	0 – 500000
Cool1 time	Weld program [8]	%IW8	WORD	0 - 99
Main heat time	Weld program [9]	%IW9	WORD	0 - 99
Main heat (PHA)	Weld program [10]	%IW10	WORD	0 – 999 (x10)
Main heat (CCR)	Weld program [11]	%IW11	WORD	0 - 999 (x10)
Main current	Weld program [12]	%IW12	DWORD	0 - 500000
Cool2 time	Weld program [14]	%IW14	WORD	0 - 99
Pulsations	Weld program [15]	%IW15	WORD	1 – 99
Post-heat time	Weld program [16]	%IW16	WORD	0 - 99
Post-heat (PHA)	Weld program [17]	%IW17	WORD	0 - 999 (x10)
Post-heat (CCR)	Weld program [18]	%IW18	WORD	0 - 999 (x10)
Post-current	Weld program [19]	%IW19	DWORD	0 - 500000
Hold time	Weld program [21]	%IW21	WORD	0 – 99
Off time	Weld program [22]	%IW22	WORD	0 - 99
Upslope time	Weld program [23]	%IW23	WORD	0 – 99
Downslope time	Weld program [24]	%IW24	WORD	0 – 99
Squeeze valves ¹	Weld program [25]	%IW25	WORD	
Pre-heat valves ¹	Weld program [26]	%IW26	WORD	
Cool1 valves ¹	Weld program [27]	%IW27	WORD	
Upslope valves ¹	Weld program [28]	%IW28	WORD	
Main heat valves ¹	Weld program [29]	%IW29	WORD	
Cool2 valves ¹	Weld program [30]	%IW30	WORD	
Downslope valves ¹	Weld program [31]	%IW31	WORD	
Post-heat valves ¹	Weld program [32]	%IW32	WORD	
Hold valves ¹	Weld program [33]	%IW33	WORD	
Off valves ¹	Weld program [34]	%IW34	WORD	
• · · · · · · · · · · · · · · · · · · ·				
1	Weld program [nn]	%IXnn.0.0	BOOL	AV1 state 1 = ON
	Weld program [nn]	%IXnn.0.1	BOOL	AV2 state 1 = ON
	Weld program [nn]	%IXnn.0.2	BOOL	AV3 state 1 = ON
	Weld program [nn]	%IXnn.0.3	BOOL	AV4 state 1 = ON
	Weld program [nn]	%IXnn.0.4	BOOL	AV5 state 1 = ON
	Weld program [nn]	%IXnn.0.5	BOOL	AV6 state 1 = ON
	Weld program [nn]	%IXnn.0.6	BOOL	AV7 state 1 = ON
	Weld program [nn]	%IXnn.0.7	BOOL	AV8 state 1 = ON

Variable	Channel	Address offset	Туре	Description
Squeeze force	Weld program [35]	%IW35	WORD	0 - 32767 ²
Pre-heat force	Weld program [36]	%IW36	WORD	0 – 32767 ²
Cool1 force	Weld program [37]	%IW37	WORD	0 – 32767 ²
Upslope force	Weld program [38]	%IW38	WORD	0 – 32767 ²
Main heat force	Weld program [39]	%IW39	WORD	0 – 32767 ²
Cool2 force	Weld program [40]	%IW40	WORD	0 – 32767 ²
Downslope force	Weld program [41]	%IW41	WORD	0 – 32767 ²
Post-heat force	Weld program [42]	%IW42	WORD	0 – 32767 ²
Hold force	Weld program [43]	%IW43	WORD	0 – 32767 ²
Off force	Weld program [44]	%IW44	WORD	0 – 32767 ²
Force low limit	Weld program [45]	%IW45	WORD	0 – 99
Force high limit	Weld program [46]	%IW46	WORD	0 – 99
Selected WAV	Weld program [47]	%IW47	WORD	0 – 7
Current low limit	Weld program [48]	%IW48	WORD	0 – 99
Current high limit	Weld program [49]	%IW49	WORD	0 – 99
Selected electrode	Weld program [50]	%IW50	WORD	0-7
Linked program	Weld program [51]	%IW51	WORD	0 – 255
Reserved	Weld program [52]	%IW52	WORD	
Reserved	Weld program [53]	%IW53	WORD	
Reserved	Weld program [54]	%IW54	WORD	
Reserved	Weld program [55]	%IW55	WORD	
Reserved	Weld program [56]	%IW56	WORD	
Reserved	Weld program [57]	%IW57	WORD	
Reserved	Weld program [58]	%IW58	WORD	
Reserved	Weld program [59]	%IW59	WORD	
Reserved	Weld program [60]	%IW60	WORD	
Attributes2	Weld program [61]	%IW61	WORD	
Inhibited	Bit 0	%IX61.0	BOOL	0 = enable, 1 = inhibit
Motor valves ¹	Weld program [62]	%IW62	WORD	
Seam balance	Weld program [63]	%IW63	WORD	0 - 200 (0 - 20.0%)

Weld program parameters (continued)

² Divide value by 898.99 for kN. Divide value by 4 for lbf.

Electrode parameters

Variable	Channel	Address offset	Туре	Description
Electrode		%IW0	WORD ARRAY [063]	
Attributes	Electrode [0]	%IW0	WORD	
Enable counter	Bit 0	%IX0.0	BOOL	0 = off, 1 = on
Enable tipdress	Bit 1	%IX0.1	BOOL	0 = off, 1 = on
Enable stepper	Bit 2	%IX0.2	BOOL	0 = off, 1 = on
Stop at endcount	Bit 3	%IX0.3	BOOL	0 = off, 1 = on
Stop at endstep	Bit 4	%IX0.4	BOOL	0 = off, 1 = on
Transformer	Electrode [1]	%IW1	WORD	0 – 7
Counter	Electrode [2]	%IW2	WORD	0 – 9999
Endcount	Electrode [3]	%IW3	WORD	0 – 9999
Dressings done	Electrode [4]	%IW4	WORD	0 – 9999
Max dressings	Electrode [5]	%IW5	WORD	0 – 9999
Stepper spots done	Electrode [6]	%IW6	DWORD	Read only
Stepper % done	Electrode [8]	%IW8	WORD	Read only
Stepper reset to	Electrode [9]	%IW9	WORD	0 – 9999
Stepper spots	Electrode [1019]	%IW1019	WORD	0 – 9999
Stepper delta H	Electrode [2029]	%IW2029	WORD	0 – 500 (% x 10)
Stepper delta I	Electrode [3039]	%IW3039	WORD	0 – 500 (% x 10)
Reserved	Electrode[40]-[63]			

Calibration parameters

Variable	Channel	Address offset	Туре	Description
Calibration		%IW0	WORD ARRAY [063]	
Power factor	Calibration [0]	%IW0	WORD	0 – 86 (x100)
A out X1	Calibration [1]	%IW1	WORD	0 – 10000 mV
A out Y1	Calibration [2]	%IW2	WORD	0 – 32767
A out X2	Calibration [3]	%IW3	WORD	0 – 10000 mV
A out Y2	Calibration [4]	%IW4	WORD	0 – 32767
A in X1	Calibration [5]	%IW5	WORD	0 – 10000 mV
A in Y1	Calibration [6]	%IW6	WORD	0 – 32767
A in X2	Calibration [7]	%IW7	WORD	0 – 10000 mV
A in Y2	Calibration [8]	%IW8	WORD	0 – 32767
CT sensitivity	Calibration [9]	%IW9	WORD	1 – 60000 mV/kA
Toroid sensitivity	Calibration [10]	%IW10	WORD	1 – 60000 mV/kA
Convert CT	Calibration [11]	%IW11	WORD	0 = off
				1 = use 2-points
				2 = use turns ratio
CT X1	Calibration [12]	%IW12	DWORD	0 – 32000
CT Y1	Calibration [14]	%IW14	DWORD	0 - 500000
CT X2	Calibration [16]	%IW16	DWORD	0 - 32000
CT Y2	Calibration [18]	%IW18	DWORD	0 - 500000
CT max	Calibration [20]	%IW20	DWORD	Read only
Turns ratio	Calibration [22]	%IW22	WORD	1 – 999
CCR gain	Calibration [23]	%IW23	WORD	1 – 10
Phase B adjust	Calibration [24]	%IW24	WORD	-99 – 99%
Phase C adjust	Calibration [25]	%IW25	WORD	-99 – 99%
Reserved	Calibration[26]-[63]			

Configuration parameters

Variable	Channel	Address offset	Туре	Description
Configuration		%IW0	WORD ARRAY [063]	·
Weld type	Configuration[0]	%IW0	WORD	0 = spot
51	5 11			1 = seam
Second stage	Configuration[1]	%IW1	WORD	
	Bit 0	%IX1.0	BOOL	00 = none
	Bit 1	%IX1.1	BOOL	01 = before Squeeze
				10 = after Squeeze
	Bit 2	%IX1.2	BOOL	Reserved
	Bit 3	%IX1.3	BOOL	0 = check first program
	-	-		1 = check every program
Retract	Configuration[2]	%IW2	WORD	0 = simple
	0 11			1 = hilift plus
				2 = hilift minus
				3 = maintained
Sensor	Configuration[3]	%IW3	WORD	0 = CT, 1 = toroid
Frequency	Configuration[4]	%IW4	WORD	0 = 50 Hz, 1 = 60 Hz
Units	Configuration[5]	%IW5	WORD	0 = metric
				1 = imperial
Electrodes	Configuration[6]	%IW6	WORD	0 = single, 1 = multi
Fault	Configuration[7]	%IW7	WORD	
Stop	Bit 0	%IX7.0	BOOL	1 = stop on fault
EOS	Bit 1	%IX7.1	BOOL	1 = EOS on fault
Headlock	Bit 2	%IX7.2	BOOL	1 = headlock on fault
Contactor	Configuration[8]	%IW8	WORD	1 - 99 seconds. 0 = off
Program select	Configuration[9]	%IW9	WORD	0 = external, 1 = internal
Internal prog	Configuration[10]	%IW10	WORD	0 - 255
I/O source	Configuration[11]	%IW11	WORD	0 = discrete
	0 1 1			1 = MODBUS COM0
				2 = MODBUS COM1
				3 = MODBUS COM2
				4 = MODBUS COM3
SCR select	Configuration[12]	%IW12	WORD	0 = direct (1 - 4 SCRs)
				1 = encoded (5 - 8 SCRs)
				2 = 3-phase
COM2 address	Configuration[13]	%IW13	WORD	1 - 247
COM2 baud	Configuration[14]	%IW14	WORD	0 = 9600
code				1 = 19200
				2 = 38400
				3 = 57600
Display	Configuration[15]	%IW15	WORD	0 = fitted, 1 = not fitted
Adapter code	Configuration[16]	%IW16	WORD	
Analog output	Configuration[17]	%IW17	WORD	0 = force
function				1 = waveform
Analog output	Configuration[18]	%IW18	DWORD	0 – 500 kA
scale (10 V =)				
Security	Configuration[20]	%IW20	WORD	0 = off
				1 = key-switch
				2 = PIN on WSP3
				3 = PIN on touchscreen
0		0/11.10 /		4 = PIN on both
Security timeout	Configuration[21]	%IW21	WORD	0 – 10 minutes
Security PIN0	Configuration[22]	%IVV22	WORD	1000 - 9999
Security PIN1		%10023	WORD	1000 - 9999
Security PIN2	Configuration[24]	%IVV24	WORD	1000 - 9999
Security PIN3	Configuration[25]	%IW25	WORD	1000 - 9999
Security PIN4	Configuration[26]	%IW26	WORD	1000 - 9999
Reserved	Configuration[27]-[38]			
Features	Configuration[39]	%IW39	WORD	0 = standard
				1 = extended
Toroid test	Configuration[40]	%IW40	WORD	0 = off, 1 = on
Reserved	Configuration[41]-[63]	1	1	

This page intentionally left blank

Tutorials

EN7000 has a number of features that can improve weld quality, diagnostics and maintenance. Before each tutorial:

- Section 12 Configuration: ensure the Configuration parameters are set appropriately for the application.
- Section 7 Electrode management: if a CT is being used to measure current, ensure the Calibration
 parameters are set.

01 Setting up a constant current weld

Phase Angle (PHA) heat control sets the heat of a weld by specifying a fixed conduction angle. The minimum and maximum conduction angles are termed 0% and 100% Heat respectively. This method of control is open loop which means there is no feedback process involved to compensate for changes in the system.

If a weld uses Constant Current (CCR) control, a current demand is read from the weld program and a conduction angle is read from memory. The first cycle of weld is carried out and the current is measured. If the measured current is not the same as the demand current an adjustment is made to the conduction angle ready for the next cycle of weld. The next cycle is then done and the comparison is repeated. This process continues throughout the weld. At the end of the weld, the conduction angle is stored in memory for when the weld program is used again. This method of control is closed loop and compensates for changes in the system such as changes in mains voltage, changes in secondary resistance and inductance.

The parameters that control a constant current weld are described in Section 13 Programming.

- 1. Set the weld program parameters to produce an acceptable weld in PHA mode. Adjust the Heat parameter to achieve the best results.
- 2. Change the welding mode from PHA to CCR. The Heat parameter will show the heat or conduction angle that will be used as the starting point of the next CCR weld. Caution: ensure the Heat parameter corresponds to the Heat used in step 1.
- 3. Set the Current to the value that produced the acceptable weld in PHA mode.
- 4. Run the program and check the results. Adjust the current if required to produce consistent welds.

02 Testing the weld current

The current for each weld can be tested against upper and lower limits.

- 1. In the weld program, enable the Test current option for each weld to be tested.
- 2. Set the Low limit and High limits appropriately. The limits correspond to a percentage of the required current.

If the weld current falls outside the limits, EN7000 will signal a weld fault.

03 Changing the force during a weld

EN7000 can change the force during a weld when the force profile option is enabled. The force can be changed at the beginning of any interval. The force output corresponds to the analog output on connector X5.

Parameter	Units	Range	Description
Squeeze ¹	kN/lbf	variable	Force used from the start of the Squeeze interval
Pre-heat ¹	kN/lbf	variable	Force used from the start the Pre-heat interval
Cool1 ¹	kN/lbf	variable	Force used from the start the Cool1 interval
Upslope ¹	kN/lbf	variable	Force used from the start the Upslope interval
Main heat	kN/lbf	variable	Force used from the start of the Main heat interval
Cool2	kN/lbf	variable	Force used from the start of the Cool2 interval
Downslope ¹	kN/lbf	variable	Force used from the start of the Downslope interval
Post-heat ¹	kN/lbf	variable	Force used from the start the Post-heat interval
Hold ¹	kN/lbf	variable	Force used from the start the Hold interval

¹ If the force profile option is disabled the Main heat force is used for the duration of the weld.

- 1. In the weld program, enable the force profile option.
- 2. In the Force parameters, set the values for each interval. The change takes place at the start of each interval and the force for each interval can be tested against limits.

04 Using the Retract functions

The Retract function allows the welding head to open in two stages.

- The fully open position allows the work piece to be positioned between the electrodes.
- The middle position allows the electrodes to close onto the work piece in order to weld.

EN7000 has four Retract modes that can be used depending on the application. The mode is selected in the Configuration settings.

Simple

When the Retract Input is switched off, the High Lift Air Valve switches off and the electrodes close to the mid position. Welding can proceed in this case.

When the Retract Input is switched on, the High Lift Air Valve switches on and the electrodes open fully. Welding will not proceed in this case.

Retract input		
HAV output		
Start input		
WAV output		7

Hi-lift +

A pulse on the Retract Input causes the High Lift Air Valve to switch on and close the electrodes to the mid position. Welding can proceed in this case.

Whilst the High Lift Air Valve is on, a pulse on the Retract Input causes the valve to switch off and the electrodes go to the fully open position. Welding will not proceed in this case.

Retract input			
HAV output			
		1	
Start input			
WAV output			

Hi-lift -

A pulse on the Retract Input causes the High Lift Air Valve to switch off and close the electrodes to the mid position. Welding can proceed in this case.

Whilst the High Lift Air Valve is off, a pulse on the Retract Input causes the valve to switch on and the electrodes go to the fully open position. Welding will not proceed in this case.

Retract input	
HAV output	
Start input	
WAV output	

Maintained

When the Retract Input is switched on, the High Lift Air Valve switches on and the electrodes close to the mid position. Welding can proceed in this case.

When the Retract Input is switched off, the High Lift Air Valve switches off and the electrodes open fully. Welding will not proceed in this case.

Retract input		
		1
HAV output		
Start input		
WAV output		

05 Using the valves to control a multi-head machine

EN7000 can be used with welding machines that have multiple welding heads. By assigning one of the EN7000s AV outputs, each head can be operated individually.

The weld air valve or WAV output is determined by the weld program.

- 1. In the weld program, use the Valve parameters to select an output that will be used as the WAV
- 2. The WAV will become active when the Start input is active and will remain active until the end of the weld sequence unless programmed otherwise.

For example:

Program	WAV	Description
0	AV1	Program 0 uses AV1 as the WAV
1	AV2	Program 1 uses AV2 as the WAV
2	AV3	Program 2 uses AV3 as the WAV
3	AV4	Program 3 uses AV4 as the WAV

The diagram shows the operation in multi-gun mode:

Start input								
EOS output]						1
AV1 output								
AV2 output								
AV3 output								
AV4 output								
Program	#0	\sim	#1	\sim	#2	$\overline{}$	#3	<u> </u>
select				_/ _				
(Program 0) Current			_^/\//_					
(Program 1) Current					_^/\//_			
(Program 2)								

The operation is similar when the programs are linked together in multi-gun cascade mode:

Start input			
EOS output			
AV1 output			
AV2 output			
AV3 output			
AV4 output			
Program select	First program #		
Current (Program 0)			
Current (Program 1)		 	
Current (Program 2)			
Current (Program 3)			

The program select inputs select the first program in the cascade (0 in this example).

88

06 Controlling a multiwelder

A multiwelder can use different transformers for each welding head.

The welding heads can be controlled as described in the previous tutorial.

- 1. Choose the transformers that will be assigned to the electrodes. The procedure is described in Section 10 Multiwelding.
- 2. Choose the weld programs that will be using the electrodes.

For example:

Electrode	SCR/Transformer	Description	
0	0		
1	0	Electrodes 0, 1 and 2 are assigned to transformer 0	
2	0		
3	1	Electrodes 3 and 4 are assigned to transformer 1	
4	1		
5	2	Electrode 5 is assigned to transformer 2	
6	3	Electrodes 6 and 7 are assigned to transformer 2	
7	3	Lieuroues o and r are assigned to transformer 5	

The electrodes can then be assigned to weld programs:

Weld program	Electrode	Description	
0	0	Wold programs 0 and 1 are assigned to Electrode 0	
1	0	weld programs o and T are assigned to Electrode o	
2	1	Wold programs 2 and 3 are assigned to Electrode 1	
3	1	weld programs 2 and 3 are assigned to Electrode 1	
4	2	Wold programs 4 and 5 are assigned to Electrode 2	
5	2	weld programs 4 and 5 are assigned to Electrode 2	
6	3	Wold programs 6 and 7 are assigned to Electrode 2	
7	3	weld programs o and 7 are assigned to Electrode 3	
8	4	Wold programs 9 and 0 are assigned to Electrode 4	
9	4	weld programs 8 and 9 are assigned to Electrode 4	
10	5	Wold programs 10 and 11 are assigned to Electrode E	
11	5	weld programs to and it are assigned to Electrode 5	
12	6	Wold programs 10 and 12 are assigned to Electrode 6	
13	6	weld programs 12 and 15 are assigned to Electrode 6	
14	7	Wold programs 14 and 15 are assigned to Electrode 7	
15	7	weig programs 14 and 15 are assigned to Electrode 7	

By implication the transformers are used as follows:

SCR/Transformer	Weld programs	Description
0	0, 1, 2, 3, 4, 5	Transformer 0 is used by weld programs 0, 1, 2, 3, 4, and 5
1	6, 7, 8, 9	Transformer 1 is used by weld programs 6, 7, 8 and 9
2	10, 11	Transformer 2 is used by weld programs 10 and 11
3	12, 13, 14,15	Transformer 3 is used by weld programs 12, 13, 14 and 15

07 Setting the power factor

An AC welding machine will have a power factor which is determined by the physical properties and geometry of the electrical system. Linear control of the machine over the full heat/current range can be achieved by programming the correct value for the power factor.

The following procedure involves running the machine at maximum output. Make sure that the mains supply and the secondary circuit are able to handle this power. Make sure that any cooling system is active. The machine must be cycled short circuit with no component.

- 1. Prepare a weld program with 5 cycles of main heat plus Squeeze and Hold time as appropriate. Set PHA mode, 0 %heat. Connect this program to the electrode to be calibrated.
- 2. Select the connected electrode program and enter Power factor = 0.
- 3. Cycle the machine and check that a current is measured.
- 4. Set 99.9 %heat in the weld program.
- 5. Cycle the machine then check the status. When the message MAX CURRENT is displayed or when the conduction is close to 100% then the process is complete. Otherwise increase the power factor and repeat this step.

Repeat the procedure for each electrode program to be used.

08 Resetting faults

Fault conditions and error messages can be reset in several ways.

Touch screen

	Sta	tus		
LOW MAIN CURRENT				
Pre-heat	0 A	Program	0	Tap the centre of any title bar to access the Status menu
Main heat	10.1 kA	Force	5.8 kN	then tap the error message
Post-heat	0 A	Conduction	30.5 %	

WSP3

Errors	
LOW MAIN CURRENT	Use to select the Metrics window then select the
	reset button

Discrete input

Input	Pin number	Description
Reset fault	X3.7	This input resets the Fault output and clears the status
		messages. Only momentary application is required
		(minimum time 40ms).

The discrete I/O is described in Section 4 Discrete I/O.

Bus input

Input	Channel	Address	Description
Reset fault	Bit 6	%QX0.6	This input resets the Fault output and clears the status messages. Only momentary application is required (minimum time 40ms).

The bus I/O is described in Section 5 MODBUS I/O.

Appendix

Updating the firmware

The functionality of EN7000 is determined by firmware stored in reprogrammable memory. EN7000 has three memories:

Memory	Description
A	Memory A
В	Memory B
BIOS	BIOS memory

The firmware can be transferred to one or more of the memories and then activated when EN7000 starts. In this way it is possible to retain different firmwares and activate them without having to reprogram EN7000. When new features become available NetFlash is used to update the firmware.

• Initialise NetFlash and select the target EN7000 as described in Section 13 Programming.

Select the Flash Programming tool
 O10011
 The following screen is shown:

Setting the IP address

EN7000 uses a device server for Ethernet communications on COM0 and COM1. The device server is an xPort AR, manufactured by Lantronix <u>www.lantronix.com</u>

To set the IP address of the EN7000 use Lantronix DeviceInstaller software www.lantronix.com/products/deviceinstaller/

- Download the documentation and Device Installer software. Install the software.
- Follow the instructions in the documentation to search for all Lantronix devices on your network. Device Installer will show the EN7000 device server in the device list. The example shows an EN7000/xPort AR with a hardware address of 00-20-4A-D5-FB-7B:

• Select the EN7000/xPort AR device then select Assign IP:

• Select 'Assign a specific IP address' and then select Next:

💊 Assign IP Address			23
	IP Settings		
	Please fill in the IP The subnet will be it for accuracy. Ind impossible for you disruption.	address, subnet, and gateway to assign filled in automatically as you type, but pl correct values in any of the below fields o ur device to communicate, and can cause r	the device. ease verify an make it network
M Lant	IP address:	192.168.0.112	
	Subnet mask:	255.255.255.0	
	Default gateway	192.168.0.252	
	<	Back Next > Cancel	Help

• Enter the IP address, subnet mask and gateway then select Next:

• Select Assign to complete the assignment. Device Installer will show the progress of the operation:

• Select Finish to return to the main screen.

Terminology

Term	Description
CCR	Constant current regulation. See Constant Current.
Conduction	The % of the mains waveform during which current is flowing.
Constant current	Closed loop control of weld current resulting in the weld current being regulated to a
	programmed value.
СТ	See Current transformer.
Current transformer	A coil of wire wound on a circular core. This is used to measure the current in a cable
	passing through the circular core. EN7000 can use a CT to measure primary current.
Cool time	The time between weld pulses.
Downslope	A linear decrease in current from the Main heat value to a final value.
Downslope time	Time taken for the welding current to decrease from the Main heat value to a final
	value. Expressed in mains cycles.
End of sequence	An output that switches on as the electrodes open on completion of a weld. The
	output indicates the end of the weld sequence.
EOS	See End of sequence.
HAV	Hi-lift Air Valve. See also Retract.
Heat	A measure of power put into a phase angle controlled (non- constant current) weld.
	The Heat relates directly to the firing angle on the mains voltage waveform.
	Expressed as a percentage.
Hold	The time between the last application of current and the electrodes opening. This
	interval allows the molten material created by the weld process to solidify.
Hold time	The time period following the last weld pulse prior to the electrodes opening. This
	period allows the molten material to solidify. Expressed in mains cycles.
IP address	Internet Protocol address. A unique address used by devices on an Ethernet network.
Initiation signal	The signal that starts the weld sequence. See also Start signal
kA	Kilo amp (1000 amps).
kVA	Unit of power (1000 volt amps).
mA	Milliamp (1/1000 amp).
mV	Millivolt (1/1000 volt).
Off time	In a Repeated weld sequence this is the time between sequences. Expressed in
	mains cycles.
PHA	See Phase angle control.
Phase angle control	Open loop control of weld current using Heat setting. The welding current is not
	regulated and can be influenced by external parameters such as mains voltage and
	cable lengths.
Post-heat	The application of current to prevent the weld cooling too quickly.
Pre-neat	I he application of current prior to weiging for the purpose of burning through plating
Dreegueeze	or surface contamination.
Presqueeze	The time interval in a weld sequence for the electrodes to close onto the work piece.
Presqueeze time	I ne time allowed for the weiding electrodes to close onto the components to be
Drimen (europet	Weided. Expressed in mains cycles.
Primary current	from the maine whilet welding
Dragram adjact	A group of inputs representing the binery value of the wold program to be used
Proportional valvo	A group or inputs representing the binary value of the weit program to be used.
	The number of times the Main heat interval is repeated during the service as
ruisations	The number of times the Main heat interval is repeated during the sequence.
Potract	The electrodes have two apon positional fully area to may the world over the second terms.
Reliaci	The electrodes have two open positions, fully open to move the weld gun to and from

	the work piece, and a working position for welding.
Retract air valve	For use on a gun where the electrodes can be opened and closed in two stages. This
	is an electrically operated valve for admitting air to the air cylinder that controls the
	electrode movement.
2nd stage	A signal required to allow the weld sequence to proceed.
SCR	See Thyristor.
Secondary current	The current in the secondary winding of the weld transformer which is the weld
	current.
Squeeze	The time interval in a weld sequence for the electrodes to exert full welding force on
	the work piece.
Squeeze time	The time allowed for the welding electrodes to build up full pressure on the
	components to be welded. Expressed in mains cycles.
Start signal	The signal that starts the weld sequence.
Stepper	A program of parameters required for stepping.
Stepping	A technique of progressively increasing the weld current over the course of a large
	number of welds in order to compensate for the effects of electrode wear.
Synchronisation	EN7000 is synchronised to the zero voltage crossing points of the mains supply.
Thermostat	A switch device that operates at a certain temperature.
Thyristor	High power switch used for switching the mains supply to the weld transformer.
Tip dress acknowledge	An input to acknowledge that the electrodes have been dressed.
Tip dress request	An output to indicate that the electrodes require dressing.
Tip dressing	Filing or machining worn electrodes to restore their original shape and dimensions.
Toroid	A device used for sensing current in a cable. The current carrying cable must pass
	through the toroid.
Upslope	A linear increase in current from an initial value to the Main heat value.
Upslope time	Time taken for current to increase from an initial value to the Main heat value.
	Expressed in mains cycles.
VA	Volt amp
WAV	See Weld air valve.
Weld air valve	Electrically controlled valve for admitting air to the air cylinder responsible for forcing
	the weld electrodes together.
Weld current	High current passed from one electrode to the other, through the components being
	welded. The current must be large enough to generate sufficient heat to melt the
	metal and produce a weld.
Weld transformer	Electrical component for converting mains voltage input to low voltage, high current
	output.